Optogenetics is widely used in neuroscience to control neural circuits. However, non-invasive methods for light delivery in brain are needed to avoid physical damage caused by current methods. One potential strategy could employ x-ray activation of radioluminescent particles (RPLs), enabling localized light generation within the brain. RPLs composed of inorganic scintillators can emit light at various wavelengths depending upon composition. Cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light in response to x-ray or ultraviolet (UV) stimulation, could potentially be used to control neural circuits through activation of channelrhodopsin-2 (ChR2), a light-gated cation channel. Whether inorganic scintillators themselves negatively impact neuronal processes and synaptic function is unknown, and was investigated here using cellular, molecular, and electrophysiological approaches. As proof of principle, we applied UV stimulation to 4 μm LSO:Ce particles during whole-cell recording of CA1 pyramidal cells in acute hippocampal slices from mice that expressed ChR2 in glutamatergic neurons. We observed an increase in frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), indicating activation of ChR2 and excitation of neurons. Importantly, LSO:Ce particles did not affect survival of primary mouse cortical neurons, even after 24 h of exposure. In extracellular dendritic field potential recordings, no change in the strength of basal glutamatergic transmission was observed during exposure to LSO:Ce microparticles. However, the amplitude of the fiber volley was slightly reduced with high stimulation. Additionally, there was a slight decrease in the frequency of sEPSCs in whole-cell voltage-clamp recordings from CA1 pyramidal cells, with no change in current amplitudes. The amplitude and frequency of spontaneous inhibitory postsynaptic currents were unchanged. Finally, long term potentiation (LTP), a synaptic modification believed to underlie learning and memory and a robust measure of synaptic integrity, was successfully induced, although the magnitude was slightly reduced. Together, these results show LSO:Ce particles are biocompatible even though there are modest effects on baseline synaptic function and long-term synaptic plasticity. Importantly, we show that light emitted from LSO:Ce particles is able to activate ChR2 and modify synaptic function. Therefore, LSO:Ce inorganic scintillators are potentially viable for use as a new light delivery system for optogenetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733890PMC
http://dx.doi.org/10.3389/fnsyn.2019.00024DOI Listing

Publication Analysis

Top Keywords

inorganic scintillators
16
lsoce particles
16
lsoce inorganic
12
synaptic function
12
lsoce
8
control neural
8
neural circuits
8
light delivery
8
ca1 pyramidal
8
pyramidal cells
8

Similar Publications

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

Scintillating Glass Fiber Arrays Enable Remote Radiation Detection and Pixelated Imaging.

Adv Mater

December 2024

State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

The emerging metal halide perovskites are challenging the traditional scintillators in the field of radiation detection and radiography. However, they lack the capability for remote and real-time radiation monitoring and imaging in confined and hostile conditions. To address this issue, details on an inorganic scintillating glass fiber incorporating perovskite quantum dots (QDs) as highly efficient pixelated radiation emitters are reported, while the glass fibers themselves serve at the same time as low-loss waveguides, enabling long-distance and underwater X-ray detection.

View Article and Find Full Text PDF

The main goal of this review paper is to show the advantages and challenges of photovoltaic cells/modules/panels and scintillators towards carbon footprint reduction for ecological safety. Briefly, the various types of solar-driven CO conversion processes are shown as a new concept of CO reduction. The health toxicity and environmental effects of scintillators, along with risks associated with use and disposal, are presented, taking into consideration inorganic and organic materials.

View Article and Find Full Text PDF

Excitation-Dependent Anti-Thermal Quenching in Zero-Dimensional Manganese Bromides for Photoluminescence and X-Ray Scintillation.

Angew Chem Int Ed Engl

December 2024

MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

One of the most significant challenges of luminescent materials is the thermal quenching (TQ) at high temperature. Understanding the correlation between crystal structure variation and photoluminescence (PL) quenching is significant to achieve anti-thermal quenching (anti-TQ) phosphors. Herein, we unveil a universal principle governing switchable TQ and anti-TQ behaviors in zero-dimensional (0D) organic-inorganic hybrid manganese bromides.

View Article and Find Full Text PDF

X-ray imaging utilizing organic-inorganic hybrid metal halide (OIHMH) glassy scintillators has garnered significant attention. But their inferior radioluminescence makes achieving rapid image acquisition difficult, posing a persistent challenge for dynamic imaging. Herein, organic phosphonium halide side-chain engineering is proposed, introducing bulky aromatic rings at the alkyl chain ends, to improve the radioluminescence of OIHMHs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!