Disrupting the pathological synchronous firing patterns of neurons with high frequency stimulation is a common treatment for Parkinsonian symptoms and epileptic seizures when pharmaceutical drugs fail. In this paper, our goal is to design a desynchronization strategy for large networks of spiking neurons such that the neuronal activity of the network remains in the desynchronized regime for a long period of time after the removal of the stimulation. We develop a novel "Forced Temporal-Spike Time Stimulation (FTSTS)" strategy that harnesses the spike-timing dependent plasticity to control the synchronization of neural activity in the network by forcing the neurons in the network to artificially fire in a specific temporal pattern. Our strategy modulates the synaptic strengths of selective synapses to achieve a desired synchrony of neural activity in the network. Our simulation results show that the FTSTS strategy can effectively synchronize or desynchronize neural activity in large spiking neuron networks and keep them in the desired state for a long period of time after the removal of the external stimulation. Using simulations, we demonstrate the robustness of our strategy in desynchronizing neural activity of networks against uncertainties in the designed stimulation pulses and network parameters. Additionally, we show in simulation, how our strategy could be incorporated within the existing desynchronization strategies to improve their overall efficacy in desynchronizing large networks. Our proposed strategy provides complete control over the synchronization of neurons in large networks and can be used to either synchronize or desynchronize neural activity based on specific applications. Moreover, it can be incorporated within other desynchronization strategies to improve the efficacy of existing therapies for numerous neurological and psychiatric disorders associated with pathological synchronization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737503 | PMC |
http://dx.doi.org/10.3389/fncom.2019.00061 | DOI Listing |
Curr Opin Support Palliat Care
March 2025
Wolfson Palliative Care Research Centre, University of Hull, Hull, East Yorkshire, UK.
Purpose Of The Review: This review summarises high-level evidence for fan therapy and adds a commentary on the relatively-neglected question of how to optimise benefits based on qualitative evidence, clinical experience and broader research and theory.
Recent Findings: Recent high-level evidence suggests the fan reduces time to recovery from episodic breathlessness rather than reduces daily levels over a longer period. Lower grade evidence suggests the fan can also help people increase their physical activity.
Aging Dis
February 2025
Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
As the resident macrophages of the brain, microglia are crucial immune cells specific to the central nervous system (CNS). They constantly surveil their surroundings and trigger immunological reactions, playing a key role in various neurodegenerative diseases (ND). As illnesses progress, microglia exhibit multiple phenotypes.
View Article and Find Full Text PDFAdv Mater
March 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
Patients with hand dysfunction require joint rehabilitation for functional restoration, and wearable electronics can provide physical signals to assess and guide the process. However, most wearable electronics are susceptible to failure under large deformations owing to instability in the layered structure, thereby weakening signal reliability. Herein, an in-situ self-welding strategy that uses dynamic hydrogen bonds at interfaces to integrate conductive elastomer layers into highly robust electronics is proposed.
View Article and Find Full Text PDFCells
February 2025
Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan.
The sex-specific development of hippocampal learning in juveniles remains unclear. Using an inhibitory avoidance task, we assessed contextual learning in both sexes of juvenile rats. While sex hormone levels and activating effects are low in juveniles, females showed superior performance to males, suggesting that females have a shorter period of infantile amnesia than males.
View Article and Find Full Text PDFGenes Brain Behav
April 2025
Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!