The Multiple-Network Poroelastic Theory (MPET) is a numerical model to characterize the transport of multiple fluid networks in the brain, which overcomes the problem of conducting separate analyses on individual fluid compartments and losing the interactions between tissue and fluids, in addition to the interaction between the different fluids themselves. In this paper, the blood perfusion results from MPET modeling are partially validated using cerebral blood flow (CBF) data obtained from arterial spin labeling (ASL) magnetic resonance imaging (MRI), which uses arterial blood water as an endogenous tracer to measure CBF. Two subjects-one healthy control and one patient with unilateral middle cerebral artery (MCA) stenosis are included in the validation test. The comparison shows several similarities between CBF data from ASL and blood perfusion results from MPET modeling, such as higher blood perfusion in the gray matter than in the white matter, higher perfusion in the periventricular region for both the healthy control and the patient, and asymmetric distribution of blood perfusion for the patient. Although the partial validation is mainly conducted in a qualitative way, it is one important step toward the full validation of the MPET model, which has the potential to be used as a testing bed for hypotheses and new theories in neuroscience research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733888 | PMC |
http://dx.doi.org/10.3389/fncom.2019.00060 | DOI Listing |
PLoS One
January 2025
Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.
View Article and Find Full Text PDFCells
December 2024
Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany.
J Cereb Blood Flow Metab
January 2025
Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.
Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.
View Article and Find Full Text PDFActa Anaesthesiol Scand
February 2025
Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Background: The harm-benefit balance for early out-of-bed mobilisation of patients with severe acquired brain injury (ABI) in neurointensive care units (neuro-ICUs) is unclear, and there are no clinical guidelines. This study aimed to survey the current clinical practice and perceptions among clinicians involved in first out-of-bed mobilisation in Scandinavian neuro-ICUs.
Methods: This was a cross-sectional, anonymous, web-based survey; the reporting follows the recommended CROSS checklist.
Am J Obstet Gynecol
January 2025
Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium. Electronic address:
Background: Aspirin has proved its efficacy in reducing the rate of preeclampsia in singleton pregnancy, however, there is discrepancy about the efficient dosage that should be used. While some societies recommend daily 75-81mg, others recommend higher dosage (160mg). This discrepancy is due to the lack of randomized controlled studies that compare these two dosages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!