Cerebral palsy (CP) is a neurodevelopmental disorder usually occurring early in life and persisting through the whole life. Several risk factors, including perinatal hypoxia-ischemia (HI), may contribute to occurrence of CP in preterm infants. DNA hydroxymethylation has been shown to play an important role in neurodevelopment and neurodegenerative disorders. However, the effect of DNA hydroxymethylation in CP remains unknown. The aim of this study is to explore whether and how DNA hydroxymethylation is involved in CP pathogenesis. We observed that overall 5-hydroxymethylcytosine (5hmC) abundance in the cortex of the temporal lobe of rat pups was decreased significantly after hypoxic-ischemic injury, and the reduced expression of Tet1 and Tet2 enzymes might be responsible for this change. Identified differential hydroxymethylation regions (DhMRs) were richly involved in multiple signaling pathways related to neuronal development and function. Furthermore, we found that reduced 5hmC modification on the DhMRs-related genes were accompanied by decrease of their mRNA expression levels. These results suggest that 5hmC modifications are involved in the CP pathogenesis and may potentially serve as a new therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737274 | PMC |
http://dx.doi.org/10.3389/fnmol.2019.00214 | DOI Listing |
NAR Genom Bioinform
March 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
DNA methylation and demethylation are key epigenetic events that regulate gene expression and cell fate. DNA demethylation via oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is typically mediated by TET (ten-eleven translocation) enzymes. The 5hmC modification is considered an intermediate state of DNA demethylation; it is particularly prevalent in the brain and is believed to play a role in the development of many cell types in the brain.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
GReD Institute, Université Clermont Auvergne, Faculté de Médecine, CRBC, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France.
Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility.
View Article and Find Full Text PDFCommun Biol
January 2025
Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!