Intracranial Atherosclerotic Disease-Related Acute Middle Cerebral Artery Occlusion Can Be Predicted by Diffusion-Weighted Imaging.

Front Neurosci

Department of Interventional Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.

Published: August 2019

The differentiation of large vessel occlusion caused by intracranial atherosclerotic stenosis (ICAS) or intracranial embolism significantly impacts the course of treatment (i.e., intravenous thrombolysis versus mechanical thrombectomy) for acute cerebral infarction. Currently, there is no objective evidence to indicate ICAS-related middle cerebral artery M1 segment occlusion before treatment. In cases of ICAS, it is often observed that the infarct core caused by ICAS-related M1 segment middle cerebral artery occlusion (MCAO) is located in deeper parts of the brain (basal ganglia or semiovoid region). To evaluate whether the location of the infarct core, identified using diffusion-weighted imaging (DWI), can be used to differentiate ICAS from intracranial embolism. Thirty-one consecutive patients diagnosed with acute cerebral infarction caused by middle cerebral artery M1 segment occlusion were retrospectively included based on angiographic findings to distinguish ICAS from embolic occlusion. Patients were divided into two groups based on the location of the infarct core on DWI: in the deep part of the brain (basal ganglia or semiovoid region) or more superficially (i.e., cortex). In 16 patients, the infarct core was mainly in the deep part of the brain on DWI [14 of 16 patients in the ICAS group and only 2 in the non-ICAS group (93.3 vs. 6.7%, respectively; < 0.001)]. The diagnostic sensitivity of DWI for ICAS was 93.3%, with a specificity of 87.5%, a Positive predictive value (PPV) of 87.5%, and an Negative predictive value (NPV) of 93.3%, the accuracy was 88.5%. Intracranial atherosclerotic disease-related acute MCAO can be predicted using DWI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738444PMC
http://dx.doi.org/10.3389/fnins.2019.00903DOI Listing

Publication Analysis

Top Keywords

middle cerebral
16
cerebral artery
16
infarct core
16
intracranial atherosclerotic
12
atherosclerotic disease-related
8
disease-related acute
8
artery occlusion
8
diffusion-weighted imaging
8
icas intracranial
8
intracranial embolism
8

Similar Publications

Impact of Multimodal Prompt Elements on Diagnostic Performance of GPT-4V in Challenging Brain MRI Cases.

Radiology

January 2025

From the Institute of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany.

Background Studies have explored the application of multimodal large language models (LLMs) in radiologic differential diagnosis. Yet, how different multimodal input combinations affect diagnostic performance is not well understood. Purpose To evaluate the impact of varying multimodal input elements on the accuracy of OpenAI's GPT-4 with vision (GPT-4V)-based brain MRI differential diagnosis.

View Article and Find Full Text PDF

Endovascular versus Best Medical Treatment for Acute Carotid Occlusion BelOw Circle of Willis (ACOBOW): The ACOBOW Study.

Radiology

January 2025

From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).

Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.

View Article and Find Full Text PDF

Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.

View Article and Find Full Text PDF

Objectives: Migraine is a common cause of headache and a leading cause of morbidity in Türkiye. This study aimed to describe the clinical characteristics and management of migraine and to compare migraine with tension-type headache (TTH) regarding the burden of disease and healthcare resource utilization.

Methods: A total of 1368 patients (aged 18-65 years) with migraine or TTH were surveyed regarding sociodemographics, headache characteristics, clinical management, disease burden, quality of life, and healthcare resource utilization within the previous 12 months.

View Article and Find Full Text PDF

Mean middle cerebral artery velocity (MCAv) and the pulsatility index (PI), at rest and in response to exercise, are important markers of cerebrovascular health status in middle-aged adults, when vascular decline assumes substantial relevance. Thus, this study aimed to describe and compare the responses of MCAv and PI to incremental exercise. Two hundred and forty-eight volunteers (50-58 years, 55% women) completed a ramp test on a cycle-ergometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!