AI Article Synopsis

Article Abstract

Our current study focused on elucidating the role of specific chemokine-receptor interactions in antigen (Ag)-specific immune cell migration from nasal to genital mucosal tissues. This cellular migration is critical to induce effective Ag-specific immune responses against sexually transmitted genital infections. In this study, nasal immunization with live attenuated HSV-2 TK induced the upregulation of CCR5 expression in effector immune cells, including CD4 T cells, in Ag-priming sites and vaginal tissue. The CCR5 ligands CCL3, CCL4, and CCL5 all showed upregulated expression in vaginal tissue; in particular, CCL5 expression was highly enhanced in the stromal cells of vaginal tissue after nasal immunization. Intravaginal blockade of CCL5 by using neutralizing antibody diminished the number of HSV-2-specific effector cells in the vagina. Furthermore, loss of CCR5, a receptor for CCL5, impaired the migration of nasally primed Ag-specific effector cells from the airway to vagina. Effector cells adoptively transferred from CCR5-deficient mice failed to migrate into vaginal tissue, consequently increasing recipient mice's susceptibility to HSV-2 vaginal infection. These results indicate that the CCR5-CCL5 chemokine pathway is required for the migration and retention of nasally primed Ag-specific effector cells in vagina for providing protective immunity against HSV-2 infection.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41385-019-0203-zDOI Listing

Publication Analysis

Top Keywords

effector cells
20
vaginal tissue
16
nasal immunization
12
hsv-2-specific effector
8
cells
8
cells vaginal
8
ag-specific immune
8
cells vagina
8
nasally primed
8
primed ag-specific
8

Similar Publications

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals.

Viruses

January 2025

Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.

Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.

View Article and Find Full Text PDF

In this study, we revealed a critical role of eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, in regulating T cells during vaccinia virus (VACV) infection. We found that eEF-2K-deficient (eEF-2K⁻/⁻) mice exhibited a significantly higher proportion of VACV-specific effector CD8 T cells without compromising the development of VACV-specific memory CD8 T cells. RNA sequencing demonstrated that eEF-2K⁻/⁻ VACV-specific effector CD8 T cells had enhanced functionality, which improves their capacity to combat viral infection during the effector phase.

View Article and Find Full Text PDF

An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.

View Article and Find Full Text PDF

: Developing ex vivo models that replicate immune-tumor interactions with high fidelity is essential for advancing immunotherapy research, as traditional two-dimensional in vitro systems often lack the complexity required to fully represent these interactions. : In this study, we establish a comprehensive 3D redirect lysis (3D-RDL) assay using colorectal cancer spheroids and adult stem cell-derived, healthy human organoids to evaluate the efficacy and safety profile of , a bispecific antibody targeting carcinoembryonic antigens (CEAs) on cancer cells and CD3 on T cells. This model allows us to assess cytotoxic activity and immune responses, capturing variations in therapeutic response not observable in simpler systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!