Certain introns significantly increase mRNA accumulation by a poorly understood mechanism. These introns have no effect when located upstream, or more than ~1 Kb downstream, of the start of transcription. We tested the ability of a formerly non-stimulating intron containing 11 copies of the sequence TTNGATYTG, which is over-represented in promoter-proximal introns in Arabidopsis thaliana, to affect expression from various positions. The activity profile of this intron at different locations was similar to that of a natural intron from the UBQ10 gene, suggesting that the motif increases mRNA accumulation by the same mechanism. A series of introns with different numbers of this motif revealed that the effect on expression is linearly dependent on motif copy number up to at least 20, with each copy adding another 1.5-fold increase in mRNA accumulation. Furthermore, 6 copies of the motif stimulated mRNA accumulation to a similar degree from within an intron or when introduced into the 5'-UTR and coding sequences of an intronless construct, demonstrating that splicing is not required for this sequence to boost expression. The ability of this motif to substantially elevate expression from several hundred nucleotides downstream of the transcription start site reveals a novel type of eukaryotic gene regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760150PMC
http://dx.doi.org/10.1038/s41598-019-50389-5DOI Listing

Publication Analysis

Top Keywords

mrna accumulation
16
motif increases
8
arabidopsis thaliana
8
increase mrna
8
expression
5
motif
5
intron-derived motif
4
increases gene
4
gene expression
4
expression transcribed
4

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.

View Article and Find Full Text PDF

Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Ya That Somdun (YTS) is a traditional Thai medicine composed of six herbs used as a strengthening tonic. Some of the herbs constituting YTS have antihyperlipidemic and anti-obesity activities. The objective of this study was to elucidate the antihyperlipidemic properties of YTS extract in rats with cholesterol suspension-induced hyperlipidemia.

View Article and Find Full Text PDF

The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!