Finding low-cost electron donors to drive denitrification is an important target for many municipal wastewater treatment plants (MWTPs). Excess sludge (biomass) potentially is a low-cost electron donor generated internally to the MWTP, but it has to be made more bioavailable. Aerobic and anoxic biomasses were treated with ultrasound, and their supernatants were used as electron donors for stimulating denitrification. The supernatant from ultrasound-treated anoxic biomass achieved 54% faster nitrate-N removal than did supernatant from the treated aerobic biomass, and the supernatant of untreated biomass was ineffective as an electron donor. UV illumination of the supernatants further enhanced the rates, with increments of 19% and 14%, respectively for the aerobic and anoxic supernatants. Sodium acetate at a range of initial concentrations was compared as a readily bioavailable electron donor to gauge the acceleration impact of the supernatants as equivalent bioavailable chemical oxygen demand (COD). The total chemical oxygen demand (TCOD) of the supernatant harvested from anoxic biomass without UV illumination was 76% bioavailable, while its bioavailable TCOD was 78% after UV illumination. For the supernatant from the aerobic biomass, the bioavailable fractions were, respectively, 56% and 58% without and with UV illumination. The greatest impact for converting excess biomass into a source of bioavailable electron donor to drive denitrification came from ultrasound treatment of the biomass, which disrupted the biomass to form particulate chemical oxygen demand (PCOD) that was bioavailable. PCOD was at least 51% bioavailable, and it contributed no less than 82% of the bioavailable COD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.109533 | DOI Listing |
Chemphyschem
January 2025
Changchun University of Technology, No. 3000, Beiyuanda Street, Gaoxinbei District, Changchun, Jilin, China, CHINA.
With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.
View Article and Find Full Text PDFChem Asian J
January 2025
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry, INDIA.
Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.
View Article and Find Full Text PDFbioRxiv
December 2024
Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!