AI Article Synopsis

  • Carotenoid coloration in animals, particularly in birds, is an important signal of individual health, but the exact mechanisms connecting coloration to overall condition have yet to be fully understood.
  • A study on wild house finches found that the conversion of dietary carotenoids to red pigments is linked to liver mitochondrial performance, as high levels of red carotenoids were found in liver mitochondria during feather molting.
  • The enzyme CYP2J19 plays a crucial role in this process, suggesting that the color of feathers not only reflects health but also indicates underlying cellular respiration and mitochondrial function.

Article Abstract

Carotenoid coloration is widely recognized as a signal of individual condition in various animals, but despite decades of study, the mechanisms that link carotenoid coloration to condition remain unresolved. Most birds with red feathers convert yellow dietary carotenoids to red carotenoids in an oxidation process requiring the gene encoding the putative cytochrome P450 enzyme CYP2J19. Here, we tested the hypothesis that the process of carotenoid oxidation and feather pigmentation is functionally linked to mitochondrial performance. Consistent with this hypothesis, we observed high levels of red ketolated carotenoids associated with the hepatic mitochondria of moulting wild house finches (), and upon fractionation, we found the highest concentration of ketolated carotenoids in the inner mitochondrial membrane. We further found that the redness of growing feathers was positively related to the performance of liver mitochondria. Structural modelling of CYP2J19 supports a direct role of this protein in carotenoid ketolation that may be functionally linked to cellular respiration. These observations suggest that feather coloration serves as a signal of core functionality through inexorable links to cellular respiration in the mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784716PMC
http://dx.doi.org/10.1098/rspb.2019.1354DOI Listing

Publication Analysis

Top Keywords

carotenoid coloration
8
functionally linked
8
ketolated carotenoids
8
cellular respiration
8
plumage redness
4
redness signals
4
signals mitochondrial
4
mitochondrial function
4
function house
4
house finch
4

Similar Publications

The solid waste generated from processing rosehip fruits into jam is valuable due to its rich content in fibres, polyphenols, and carotenoids; it could be valorised as a functional ingredient in a powder form to enrich food products. This study aimed to test its potential as a value-added ingredient, especially to enrich waffle cones with fibres, polyphenols, and carotenoids. In this regard, four formulations of waffle cones were prepared by partially substituting wheat flour with rosehip waste powder at 0%, 10%, 15%, and 20%, reaching concentrations of 0%, 3.

View Article and Find Full Text PDF

Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in 'Sakimp005'.

Int J Mol Sci

December 2024

Research and Development Center of Landscape Plants and Horticulture Flowers, Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China.

One of the most important characteristics of ornamental plants is leaf color, which enhances the color of plant landscapes and attracts pollinators for reproduction. The leaves of 'Sakimp005' are initially green, then the middle part appears yellow, then gradually become white, while the edge remains green. In the study, leaves of 'Sakimp005', in four developmental stages (S1-G, S2-C, S3-C, and S4-C), were selected for the determination of pigment content, chromaticity values, integrative metabolomics, and transcriptomics analyses.

View Article and Find Full Text PDF

The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.

View Article and Find Full Text PDF

Physicochemical and aromatic properties of iron-enriched tomato paste during storage.

Food Res Int

January 2025

Department of Agricultural, Forest and Food Sciences (DiSAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco TO, Italy. Electronic address:

In this study, tomato paste was fortified with iron compounds at 25, 50, and 75 ppm concentrations. The effect of adding these micronutrient iron concentrations on the paste's physical, mechanical, aromatic, and chemical properties was evaluated every 15 days over a 60-day, storage period. The results indicated a gradual decrease in pH, total soluble solids (TSS), and taste index, alongside an increase in total acidity (TA) for all treatments throughout the storage period.

View Article and Find Full Text PDF

Advanced genome engineering enables precise and customizable modifications of bacterial species, and toolsets that exhibit broad-host compatibility are particularly valued owing to their portability. Tn5 transposon vectors have been widely used to establish random integrations of desired DNA sequences into bacterial genomes. However, the iteration of the procedure remains challenging because of the limited availability and reusability of selection markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!