Purpose: Based on the recent aptamer-related breast cancer studies, which indicate the therapeutic role of specific oligonucleotide sequences, experiments have been designed in an attempt to unravel the molecular targets of this mechanism. This article describes the study on glycoproteome changes in breast cancer cells as a result of their interactions with aptamers.
Experimental Design: Aberrations in protein glycosylation play an important role in tumorigenesis and influence cancer progression, metastasis, immunoresponse, and chemoresistance, therefore this study is focused on the identification of the alterations in glycan expression on the surface of proteins as a potential and innovative tool for biomedical applications of aptamers in cancer treatment.
Results: Two proteins, kinesin-like protein (KI13B) and proliferating cell nuclear antigen (PCNA), have been identified that carry N-glycan epitopes after conjugation with aptamer sequences.
Conclusions And Clinical Relevance: Multiple features of aptamers as an alternative to protein antibodies are utilized for various biomedical applications ranging from biomarker discovery, bioimaging, targeted therapy, drug delivery, and drug pharmacokinetics and biodistribution. Frequently, aptamers bind to their target molecules and modulate their function. Such therapeutic aptamers can modify the biological pathways for treatment of many types of diseases, such as cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prca.201800186 | DOI Listing |
Biochim Biophys Acta Gen Subj
January 2025
School of Health and Life Sciences, University of Health and Rehabilitation, Sciences, Qingdao 266071, China. Electronic address:
Aberrant glycosylation has been implicated in promoting the progression and metastasis of pancreatic ductal adenocarcinoma (PDAC). However, the contribution of different glycosylation-related genes in PDAC remains to be clarified. In this study, we performed a differential analysis of RNA-Seq data from TCGA and GTEx and found GALNT5 as the most significant upregulated glycosylation-related gene in PDAC.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFJ Proteome Res
January 2025
The First Affiliated Hospital of Ningbo University, Ningbo315010, P.R. China.
Lung adenocarcinoma (LUAD) is the most common histological subtype of nonsmall-cell lung cancer. Herein, a multiomics method, which combined proteomic and N-glycoproteomic analyses, was developed to analyze the normal and cancerous bronchoalveolar lavage fluids (BALFs) from six LUAD patients to identify potential biomarkers of LUAD. The data-independent acquisition proteomic analysis was first used to analyze BALFs, which identified 59 differentially expressed proteins (DEPs).
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
ine orporator 5 (INC5, SER5) suppresses viral cell-free infection. However, its antiviral potency under viral cell-cell infection is not examined yet. Here, we established the cell-cell infection systems to assess SER5's antiviral activity on HIV-1 and bovine leukemia virus (BLV).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!