Dipole coupled magnetic quantum-dot cellular automata-based efficient approximate nanomagnetic subtractor and adder design approach.

Nanotechnology

Advanced Embedded Systems and IC Design Laboratory, Department of Electrical Engineering, Indian Institute of Technology (IIT), Hyderabad 502285, India.

Published: January 2020

In this paper, we propose a dipole coupled magnetic quantum-dot cellular automata-based approximate nanomagnetic (APN) architectural design approach for subtractor and adder. In addition, we also introduce an APN architecture which offers runtime reconfigurability using a single design layout comprising only four nanomagnets. Subsequently, we propose the APN add/sub architecture by exploiting shape anisotropy and ferromagnetically coupled fixed input majority gate. The proposed APN architecture designs have been implemented using a micromagnetic simulation tool and performance has been compared with the state-of-the-art approach resulting in a ∼50%-80% reduction in the number of nanomagnets and clock cycles without degradation in the accuracy leading to area and energy efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab475cDOI Listing

Publication Analysis

Top Keywords

dipole coupled
8
coupled magnetic
8
magnetic quantum-dot
8
quantum-dot cellular
8
cellular automata-based
8
approximate nanomagnetic
8
subtractor adder
8
design approach
8
apn architecture
8
automata-based efficient
4

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.

View Article and Find Full Text PDF

2D metallic transition metal dichalcogenides: promising contact metals for 2D GaN-based (opto)electronic devices.

Phys Chem Chem Phys

January 2025

Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices, Jiangxi Science & Technology Normal University, Nanchang 330018, China.

Owing to their high light absorption coefficient, excellent electronic mobility, and enhanced excitonic effect, two-dimensional (2D) GaN materials hold great potential for applications in optoelectronic and electronic devices. As the metal-semiconductor junction (MSJ) is a fundamental component of semiconductor-based devices, identifying a suitable metal for contacting semiconductors is essential. In this work, detailed first-principles calculations were performed to investigate the contact behavior between the GaN monolayer (ML) and a series of 2D metals MX (M = Nb, Ta, V, Mo, or W; X = S or Se).

View Article and Find Full Text PDF

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!