Objectives: To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images.
Material And Methods: In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics".
Results: Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD.
Conclusion: This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2019.103450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!