Ubiquitin-specific protease USP36 knockdown impairs Parkin-dependent mitophagy via downregulation of Beclin-1-associated autophagy-related ATG14L.

Exp Cell Res

Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany.

Published: November 2019

Parkin is an ubiquitin ligase regulating mitochondrial quality control reactions, including the autophagic removal of depolarized mitochondria (mitophagy). Parkin-mediated protein ubiquitinations may be counteracted by deubiquitinating enzymes (DUBs). We conducted a high-content imaging screen of Parkin translocation to depolarized mitochondria after siRNA mediated silencing of each DUB in Parkin overexpressing HeLa cells. Knockdown of the ubiquitin-specific protease USP36 led to delayed Parkin translocation while only slightly disturbing the ubiquitination of mitochondrial proteins, but final autophagic elimination of mitochondria was severely disrupted. The localization of the nucleolar USP36 was not altered during mitophagy. However, the marker for transcriptional active chromatin, histone 2B Lys120 mono-ubiquitination was found reduced in USP36-silenced cells undergoing mitophagy. We observed a reduction of the mRNA and protein levels of Beclin-1 and its associated autophagy-related key regulator ATG14L in USP36 knockdown cells. Importantly, transfection of active ATG14L into USP36-silenced cells significantly restored Parkin-dependent mitophagy. We propose USP36 as regulator for the Parkin-dependent mitophagy at least in part via the Beclin-1-ATG14L pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2019.111641DOI Listing

Publication Analysis

Top Keywords

parkin-dependent mitophagy
12
ubiquitin-specific protease
8
protease usp36
8
usp36 knockdown
8
depolarized mitochondria
8
parkin translocation
8
usp36-silenced cells
8
mitophagy
6
usp36
5
knockdown impairs
4

Similar Publications

Cordycepin alleviates metabolic dysfunction-associated liver disease by restoring mitochondrial homeostasis and reducing oxidative stress via Parkin-mediated mitophagy.

Biochem Pharmacol

January 2025

West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China. Electronic address:

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) keeps rising with only a few drugs available. The present study aims to investigate the effects and mechanisms of cordycepin on MASLD. Male C57BL/6 mice were induced with a 90-day high-fat diet (HFD) and intraperitoneal administration with streptozotocin to establish MASLD murine model.

View Article and Find Full Text PDF

Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation.

Pathogens

December 2024

Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

Chronic HCV infection is a risk factor for end-stage liver disease, leading to a major burden on public health. Mitophagy is a specific form of selective autophagy that eliminates mitochondria to maintain mitochondrial integrity. HCV NS5A is a multifunctional protein that regulates the HCV life cycle and may induce host mitophagy.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial fission and mitophagy are crucial for understanding myocardial ischemia-reperfusion (IR) injury, but their regulatory mechanisms are not well understood.
  • Elevated Nr4a1 levels after myocardial IR injury correlate with worse cardiac function, increased cell death, inflammation, and endothelial issues, while Nr4a1-knockout mice show protection and better mitochondrial health.
  • Targeting Nr4a1 to balance mitochondrial fission and mitophagy could provide new therapeutic options to improve heart health during ischemic conditions.
View Article and Find Full Text PDF

Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.

Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.

View Article and Find Full Text PDF

Differential effects of EPA and DHA on aging-related sarcopenia in mice and possible mechanisms involved.

Food Funct

December 2024

Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.

Sarcopenia frequently occurs with aging and leads to major adverse impacts in elderly individuals. The protective effects of omega-3 polyunsaturated fatty acids against aging-related sarcopenia have been demonstrated; however, the effect and underlying mechanism of EPA or DHA alone remain inconclusive. Hence, the present study was aimed to clarify the differential effects and possible mechanisms of EPA and DHA on aging-related sarcopenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!