A method to probe protein structure from UV absorbance spectra.

Anal Biochem

National School of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA; Department of Biology, Baylor University, Waco, TX, 76706, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA. Electronic address:

Published: December 2019

Proteins primarily absorb UV light due to the presence of tryptophan, tyrosine, and phenylalanine residues, with absorbance maxima at 280, 275, and 258 nm, respectively. We now demonstrate that a simple value obtained by relating the absorbance at all three wavelengths, [A280/A275 + A280/A258], is a generally useful, robust, and sensitive probe of protein 'foldedness', and thus can be used to investigate unfolding, refolding, disulfide bonds, stability, buffer excipients, and even protein-protein and protein-ligand interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2019.113450DOI Listing

Publication Analysis

Top Keywords

probe protein
8
method probe
4
protein structure
4
structure absorbance
4
absorbance spectra
4
spectra proteins
4
proteins absorb
4
absorb light
4
light presence
4
presence tryptophan
4

Similar Publications

Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications.

View Article and Find Full Text PDF

Site-selective photo-crosslinking for the characterisation of transient ubiquitin-like protein-protein interactions.

PLoS One

January 2025

Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.

View Article and Find Full Text PDF

Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!