As 15-20% of reproductive aged females are suffering from polycystic ovary syndrome (PCOS), a large number of pharmacological preparations are frequently available in the market for the treatment of PCOS; however, they seem to be ineffective and cause undesirable side effects. This has emphasized the need to optimize dosage regimens for individualized treatment. The objective of this systematic review is to review single nucleotide polymorphisms (SNPs) associated with drugs used for the treatment of PCOS to understand pharmacogenetics variability of patients to drug response there by helping clinicians in designing tailored treatments and possibly reducing adverse drug reactions. A comprehensive electronic literature search was conducted to highlight some clinically relevant SNPs that act to influence PCOS and associated co-morbidities. A total of 16 studies were included in this review. These genetic variations can be used as a potential target for pharmacotherapy and pharmacogenetic clinical trials for better diagnosis, management, and treatment planning.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03602532.2019.1667380DOI Listing

Publication Analysis

Top Keywords

single nucleotide
8
nucleotide polymorphisms
8
polycystic ovary
8
ovary syndrome
8
systematic review
8
treatment pcos
8
treatment
5
polymorphisms treatment
4
treatment polycystic
4
syndrome systematic
4

Similar Publications

Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains.

Vet Res

January 2025

Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.

Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century.

View Article and Find Full Text PDF

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) is recognized as a common clinical conditional pathogen with bla gene-mediated multidrug-resistance that is a significant threat to public health safety. Timely and effective infection control measures are needed to prevent their spread.

Methods: We conducted a retrospective study of CRAB patients at three teaching hospitals from 2019 to 2022.

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

The single nucleotide polymorphism in NOD2 (rs2066847) is associated with conditions that may predispose to the development of gastrointestinal disorders, as well as the known BRCA1 and BRCA2 variants classified as risk factors in many cancers. In our study, we analyzed these variants in a group of patients with pancreatitis and pancreatic cancer to clarify their role in pancreatic disease development. The DNA was isolated from whole blood samples of 553 patients with pancreatitis, 83 patients with pancreatic cancer, 44 cases of other pancreatic diseases, and 116 healthy volunteers.

View Article and Find Full Text PDF

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!