New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers.

Chem Rev

Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research (IIR) , Tokyo Institute of Technology, Yokohama 226-8503 , Japan.

Published: January 2020

Among various approaches synthesizing metal nanoparticles and tiny clusters, a template method using dendrimers has significant advantages over other chemical approaches with respect to their synthetic precision and the scalability. A dendrimer of polydentate ligands assembles metal ions or salts into the interior allowing production of metal nanoparticles in the dendrimer. The dendrimer-encapsulated nanoparticles (DENs) exhibit unique and remarkable catalytic properties depending on the size and elemental formula. Recent advances in dendrimer chemistry even enabled the atom precise synthesis of subnanometer metal clusters that have been impossible to prepare by wet chemical methods. In addition, not only for the synthesis of metal nanoparticles and clusters, the dendrimer itself can also provide the modulation of activity and selectivity in the catalysis. In this review, we summarized the most relevant research in which the dendrimer was employed as the template, modulator, or stabilizer for nanoparticle synthesis for catalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.9b00188DOI Listing

Publication Analysis

Top Keywords

metal nanoparticles
12
metal
5
dendrimer
5
horizon nanoparticle
4
nanoparticle cluster
4
cluster catalysis
4
catalysis dendrimers
4
dendrimers approaches
4
approaches synthesizing
4
synthesizing metal
4

Similar Publications

Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate.

View Article and Find Full Text PDF

Inverse vulcanization (IV) enables the production of sustainable polymer from sulfur waste, offering hydrophobic, fluorine-free, and superhydrophobic coatings. However, these materials need adhesion improvements for enhanced durability. This study has developed an epoxy-, fluorine-, and metal-free superhydrophobic coating using the spray-coating of carbon nanofibers (CNFs), silica nanoparticles, and IV polymers on glass.

View Article and Find Full Text PDF

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Background: Real-time and rapid detection of ingredients in food has important significance for food safety. However, traditional detection methods not only require bulky and costly instruments but also are often based on single-mode analysis, limiting their accuracy and applications in point-of-care testing. Herein, an integrated and miniaturized dual-mode device based on colorimetric and photoacoustic (PA) principles is developed, using Au@Ag nanoparticles (Au@AgNPs) as signal probe and ascorbic acid (AA) and ascorbate oxidase (AAO) as analytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!