Piezoelectric Energy Harvesting from Two-Dimensional Boron Nitride Nanoflakes.

ACS Appl Mater Interfaces

School of Materials Science and Engineering , Kyungpook National University, 80 Daehak-ro , Buk-gu, Daegu 41566 , Republic of Korea.

Published: October 2019

Two-dimensional (2D) piezoelectric hexagonal boron nitride nanoflakes (h-BN NFs) were synthesized by a mechanochemical exfoliation process and transferred onto an electrode line-patterned plastic substrate to characterize the energy harvesting ability of individual NFs by external stress. A single BN NF produced alternate piezoelectric output sources of ∼50 mV and ∼30 pA when deformed by mechanical bendings. The piezoelectric voltage coefficient () of a single BN NF was experimentally determined to be 2.35 × 10 V·m·N. The piezoelectric composite composed of BN NFs and an elastomer was spin-coated onto a bulk Si substrate and then transferred onto the electrode-coated plastic substrates to fabricate a BN NFs-based flexible piezoelectric energy harvester (f-PEH) which converted a piezoelectric voltage of ∼9 V, a current of ∼200 nA, and an effective output power of ∼0.3 μW. This result provides a new strategy for precisely characterizing the energy generation ability of piezoelectric nanostructures and for demonstrating f-PEH based on 2D piezomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b12187DOI Listing

Publication Analysis

Top Keywords

piezoelectric
8
piezoelectric energy
8
energy harvesting
8
boron nitride
8
nitride nanoflakes
8
piezoelectric voltage
8
harvesting two-dimensional
4
two-dimensional boron
4
nanoflakes two-dimensional
4
two-dimensional piezoelectric
4

Similar Publications

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Photon emission may be continuously produced from mechanical work through self-recoverable mechanoluminescence (ML). Significant progress has been made in high-performance ML materials in the past decades, but the rate-dependent ML kinetics remains poorly understood. Here, we have conducted systematic studies on the self-recoverable ML of Mn-doped SrZnOS (SrZnOS: Mn) under rapid compression up to ~10 GPa.

View Article and Find Full Text PDF

Investigation of a flat-type piezoelectric motor using in-plane vibrations.

Rev Sci Instrum

January 2025

School of Perceptual Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

This paper presents a flat-type piezoelectric motor utilizing in-plane vibration modes. Two piezoelectric ceramic plates in combination with a brass metal sheet were used to construct the stator. The superposition of two second order in-plane vibration modes can generate a traveling-wave inside the stator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!