Selective avoidance aims at sparing functional lung regions. Here, we preferentially direct radiation to irreversibly nonfunctional lung areas based on planning CT imaging to reduce functional lung damage. For 12 stage I-IV NSCLC patients, 5 lung substructures were segmented on the planning CT, combining voxels <-900HU, -900HU to -801HU, -800HU to -701HU, -700HU to -601HU and ≥-600HU (Level 1 to 5). Two VMAT plans were optimized: a reference plan blinded from substructures and a selective avoidance plan (AV) imposing gradually stricter constraints on Level 1-5, based on previously validated associations between lung subvolume baseline density and density increase (ΔHU) after treatment. Characteristics of treatment plans were evaluated, including subvolumes, dose, and predicted ΔHU (with reported 95% CI reflecting prediction model uncertainty). Segmented substructures were on average 477 cc, 1157 cc, 484 cc, 69 cc, and 123 cc (Level 1-5). AV plans could spare Level 3-5, e.g., mean dose decrease of 3.5 Gy (range 0.6 Gy; 6.0 Gy) for Level 5, 001. This significantly reduced the average lung mass with predicted ΔHU>20HU by 12.5 g (95% CI: 5.4-16.9) and 27.1 g (95% CI: 10.2-32.9) for a median and upper 10th percentile patient susceptibility for damage simulation, respectively. Lung damage avoidance based on CT density is feasible and easy to implement. A biomarker providing a reliable selection of patients with high susceptibility for lung damage will be crucial to show the clinical relevance of this avoidance planning strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0284186X.2019.1669814DOI Listing

Publication Analysis

Top Keywords

lung damage
16
lung
8
functional lung
8
damage
5
regional lung
4
avoidance
4
lung avoidance
4
avoidance numbers
4
numbers reduce
4
reduce radiation-induced
4

Similar Publications

Role of inflammasomes in acute respiratory distress syndrome.

Thorax

January 2025

Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK.

Acute respiratory distress syndrome (ARDS) is present in >10% of all people admitted to critical care and is associated with severe morbidity and mortality. Despite more than half a century since its first description, no efficacious pharmacological therapies have been developed, and little progress has been made in improving clinical outcomes. Neutrophils are the principal drivers of ARDS, with their priming and subsequent aberrant downstream functions, including interleukin (IL) 1β and IL-18 secretion, central to the disease pathogenesis.

View Article and Find Full Text PDF

Damage sensing through TLR9 regulates inflammatory and antiviral responses during influenza infection.

Mucosal Immunol

January 2025

Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA. Electronic address:

Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood.

View Article and Find Full Text PDF

Background: Fine particulate matter (PM2.5) is a global environmental problem that threatens public health because it can induce ferroptosis and cause lung injury. Hesperetin (Hes), a natural compound widely present in fruits and vegetables, can activate nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting powerful antioxidant effects.

View Article and Find Full Text PDF

The inhibitory effect of Hypericum japonicum on H9N2 avian influenza virus.

Adv Biotechnol (Singap)

November 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.

The H9N2 subtype of avian influenza virus (AIV) causes severe immunosuppression and high mortality in view of its frequent co-infection with other pathogens, resulting in significant economic losses in the poultry industry. Current vaccines provide suboptimal immune protection against H9N2 AIV owing to antigenic variations, highlighting the urgent need for safe and effective antiviral drugs for the prevention and treatment of this virus. This study aimed to investigate the inhibitory effects of Hypericum japonicum extract on H9N2 AIV.

View Article and Find Full Text PDF

Rationale: COVID-19-associated acute-respiratory distress syndrome (C-ARDS) results from a direct viral injury associated with host excessive innate immune response mainly affecting the lungs. However, cytokine profile in the lung compartment of C-ARDS patients has not been widely studied, nor compared to non-COVID related ARDS (NC-ARDS).

Objectives: To evaluate caspase-1 activation, IL-1 signature, and other inflammatory cytokine pathways associated with tissue damage using post-mortem lung tissues, bronchoalveolar lavage fluids (BALF), and serum across the spectrum of COVID-19 severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!