Type-II water-soluble chlorophyll (Chl) proteins (WSCPs) of Brassicaceae are promising models for understanding how protein sequence and structure affect Chl binding and spectral tuning in photosynthetic Chl-protein complexes. However, to date, their use has been limited by the small number of known WSCPs, which also limited understanding their physiological roles. To overcome these limitations, we performed a phylogenetic analysis to compile a more comprehensive and complete set of natural type-II WSCP homologues. The identified homologues were heterologously expressed in Escherichia coli, purified, tested for assembly with chlorophylls, and spectroscopically characterized. The analyses led to the discovery of previously unrecognized type-IIa and IIb subclass WSCPs, as well as of a new subclass that did not bind chlorophylls. Further analysis by ancestral sequence reconstruction yielded sequences of putative ancestors of the three subclasses, which were subsequently recombinantly expressed in E. coli, purified and characterized. Combining the phylogenetic and spectroscopic data with molecular structural information revealed distinct Chl-binding motifs, and identified residues critically impacting spectral tuning. The distinct Chl-binding properties of the WSCP archetypes suggest that the non-Chl-binding subclass evolved from a Chl-binding ancestor that most likely lost its Chl-binding capacity upon localization in the plant tissues with low Chl content. This dual evolutionary trajectory is consistent with WSCPs association with the Kunitz-type protease inhibitors superfamily, and indications of their inhibitory activity in response to various forms of stress in plants. These findings suggest new directions for exploring the physiological roles of WSCPs and the correlation, if any, between Chl-binding and protease inhibition functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054047 | PMC |
http://dx.doi.org/10.1111/febs.15068 | DOI Listing |
J Am Chem Soc
January 2025
McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Laboratory, Tampere University, 33104, Tampere, Finland.
Supercontinuum generation in optical fiber involves complex nonlinear dynamics, making optimization challenging, and typically relying on trial-and-error or extensive numerical simulations. Machine learning and metaheuristic algorithms offer more efficient optimization approaches. We report here an experimental study of supercontinuum spectral shaping by tuning the phase of the input pulses, different optimization approaches including a genetic algorithm, particle swarm optimizer, and simulated annealing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge.
View Article and Find Full Text PDFBMC Neurosci
December 2024
Powell Mansfield, Inc., San Diego, CA, USA.
Obstructive sleep apnea (OSA) is widespread, under-recognized, and under-treated, impacting the health and quality of life for millions. The current gold standard for sleep apnea testing is based on the in-lab sleep study, which is costly, cumbersome, not readily available and represents a well-known roadblock to managing this huge societal burden. Assessment of neuromuscular function involved in the upper airway using electromyography (EMG) has shown potential to characterize and diagnose sleep apnea, while the development of transmembranous electromyography (tmEMG), a painless surface probe, has made this opportunity practical and highly feasible.
View Article and Find Full Text PDFUntrained networks inspired by deep image priors have shown promising capabilities in recovering high-quality images from noisy or partial measurements . Their success is widely attributed to implicit regularization due to the spectral bias of suitable network architectures. However, the application of such network-based priors often entails superfluous architectural decisions, risks of overfitting, and lengthy optimization processes, all of which hinder their practicality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!