The apparently near-term effects of the monoclonal antibody BAN2401 in slowing the progression of prodromal Alzheimer's disease (AD) has created cautious optimism about the therapeutic use of antibodies that neutralize cytotoxic soluble amyloid- aggregates, rather than removing plaque. Plaque being protective, as it immobilizes cytotoxic amyloid-, rather than AD's causative agent. The presence of natural antibodies against cytotoxic amyloid- implies the existence of a protective anti-AD immunity. Hence, for vaccines to induce a similar immunoresponse that prevents and/or delays the onset of AD, they must have adjuvants that stimulate a sole anti-inflammatory Th2 immunity, plus immunogens that induce a protective immunoresponse against diverse cytotoxic amyloid- conformers. Indeed, amyloid- pleomorphism may explain the lack of long-term protection by monoclonal antibodies that neutralize single conformers, like aducanumab. A situation that would allow new cytotoxic conformers to escape neutralization by previously effective monoclonal antibodies. Stimulation of a vaccine's effective immunoresponse would require the concurrent delivery of immunogen to dendritic cells and their priming, to induce a polarized Th2 immunity. An immunoresponse that would produce besides neutralizing antibodies against neurotoxic amyloid- oligomers, anti-inflammatory cytokines; preventing inflammation that aggravates AD. Because of age-linked immune decline, vaccines would be significantly more effective in preventing, rather than treating AD. Considering the amyloid-'s role in tau's pathological hyperphosphorylation and their synergism in AD, the development of preventive vaccines against both amyloid- and tau should be considered. Due to convenience and cost, vaccines may be the only option available to many countries to forestall the impending AD epidemic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750119 | PMC |
http://dx.doi.org/10.34133/2019/5341375 | DOI Listing |
Nutrients
December 2024
Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy.
Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China. Electronic address:
Eur J Pharmacol
February 2025
Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P.R. China. Electronic address:
MicroRNA-222 (miR-222) plays a crucial role in neurodegeneration and is up-regulated in Alzheimer's disease (AD) patients. Andrographolide (Andro) has been reported to have anti-inflammatory and neuroprotective effects, showing potential for treating AD. The relationship between Andro's anti-AD mechanism and the regulation of miR-222 was discussed in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!