Promising Results from Alzheimer's Disease Passive Immunotherapy Support the Development of a Preventive Vaccine.

Research (Wash D C)

Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.

Published: May 2019

The apparently near-term effects of the monoclonal antibody BAN2401 in slowing the progression of prodromal Alzheimer's disease (AD) has created cautious optimism about the therapeutic use of antibodies that neutralize cytotoxic soluble amyloid- aggregates, rather than removing plaque. Plaque being protective, as it immobilizes cytotoxic amyloid-, rather than AD's causative agent. The presence of natural antibodies against cytotoxic amyloid- implies the existence of a protective anti-AD immunity. Hence, for vaccines to induce a similar immunoresponse that prevents and/or delays the onset of AD, they must have adjuvants that stimulate a sole anti-inflammatory Th2 immunity, plus immunogens that induce a protective immunoresponse against diverse cytotoxic amyloid- conformers. Indeed, amyloid- pleomorphism may explain the lack of long-term protection by monoclonal antibodies that neutralize single conformers, like aducanumab. A situation that would allow new cytotoxic conformers to escape neutralization by previously effective monoclonal antibodies. Stimulation of a vaccine's effective immunoresponse would require the concurrent delivery of immunogen to dendritic cells and their priming, to induce a polarized Th2 immunity. An immunoresponse that would produce besides neutralizing antibodies against neurotoxic amyloid- oligomers, anti-inflammatory cytokines; preventing inflammation that aggravates AD. Because of age-linked immune decline, vaccines would be significantly more effective in preventing, rather than treating AD. Considering the amyloid-'s role in tau's pathological hyperphosphorylation and their synergism in AD, the development of preventive vaccines against both amyloid- and tau should be considered. Due to convenience and cost, vaccines may be the only option available to many countries to forestall the impending AD epidemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750119PMC
http://dx.doi.org/10.34133/2019/5341375DOI Listing

Publication Analysis

Top Keywords

cytotoxic amyloid-
12
alzheimer's disease
8
development preventive
8
antibodies neutralize
8
th2 immunity
8
monoclonal antibodies
8
amyloid-
7
antibodies
5
cytotoxic
5
promising alzheimer's
4

Similar Publications

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Multifunctional selenium-doped carbon dots for modulating Alzheimer's disease related toxic ions, inhibiting amyloid aggregation and scavenging reactive oxygen species.

Int J Biol Macromol

December 2024

Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China. Electronic address:

Article Synopsis
  • β-Amyloid deposition, oxidative stress, and metal ion imbalance are key features of Alzheimer's disease, creating a need for effective multi-target therapies.
  • Researchers developed multifunctional selenium-doped carbonized polymer dots (SeCDs) to inhibit Aβ aggregation, reduce reactive oxygen species (ROS), and chelate copper ions.
  • SeCDs successfully clear harmful radicals and bind Cu ions, lowering cytotoxicity related to Aβ-Cu complexes, and show promise as a treatment option by reducing intracellular ROS levels.
View Article and Find Full Text PDF

Andrographolide mitigates neurotoxicity induced by lipopolysaccharide or amyloid-β through modulation of miR-222-mediated p62 and NF-κBp65 expression.

Eur J Pharmacol

February 2025

Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P.R. China. Electronic address:

MicroRNA-222 (miR-222) plays a crucial role in neurodegeneration and is up-regulated in Alzheimer's disease (AD) patients. Andrographolide (Andro) has been reported to have anti-inflammatory and neuroprotective effects, showing potential for treating AD. The relationship between Andro's anti-AD mechanism and the regulation of miR-222 was discussed in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!