We present a study of a graphene-based Josephson junction with dedicated side gates carved from the same sheet of graphene as the junction itself. These side gates are highly efficient and allow us to modulate carrier density along either edge of the junction in a wide range. In particular, in magnetic fields in the 1- to 2-T range, we are able to populate the next Landau level, resulting in Hall plateaus with conductance that differs from the bulk filling factor. When counter-propagating quantum Hall edge states are introduced along either edge, we observe a supercurrent localized along that edge of the junction. Here, we study these supercurrents as a function of magnetic field and carrier density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744260PMC
http://dx.doi.org/10.1126/sciadv.aaw8693DOI Listing

Publication Analysis

Top Keywords

side gates
8
carrier density
8
edge junction
8
quantum hall-based
4
hall-based superconducting
4
superconducting interference
4
interference device
4
device study
4
study graphene-based
4
graphene-based josephson
4

Similar Publications

In plants, sugar will eventually be exported transporters (SWEETs) facilitate the translocation of mono- and disaccharides across membranes and play a critical role in modulating responses to gibberellin (GA3), a key growth hormone. However, the dynamic mechanisms underlying sucrose and GA3 binding and transport remain elusive. Here, we employed microsecond-scale molecular dynamics (MD) simulations to investigate the influence of sucrose and GA3 binding on SWEET13 transporter motions.

View Article and Find Full Text PDF

Super-refractory status epilepticus (SRSE) is defined as status epilepticus that persists or recurs after treatment with anesthetic agents for more than 24 hours, including cases with recurrent seizures on reduction or withdrawal of anesthetic drugs. Super-refractory status epilepticus presents a significant challenge for neurologists, particularly when standard treatments fail to achieve seizure control. Lacosamide, which has a unique mechanism involving modulating voltage-gated sodium channels by enhancing their slow inactivation, has emerged as a potential option for managing SRSE.

View Article and Find Full Text PDF

Side-Gated Iontronic Memtransistor: A Fast and Energy-Efficient Neuromorphic Building Block.

Small

January 2025

eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala, 695551, India.

Iontronic memtransistors have emerged as technologically superior to conventional memristors for neuromorphic applications due to their low operating voltage, additional gate control, and enhanced energy efficiency. In this study, a side-gated iontronic organic memtransistor (SG-IOMT) device is explored as a potential energy-efficient hardware building block for fast neuromorphic computing. Its operational flexibility, which encompasses the complex integration of redox activities, ion dynamics, and polaron generation, makes this device intriguing for simultaneous information storage and processing, as it effectively overcomes the von Neumann bottleneck of conventional computing.

View Article and Find Full Text PDF

Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH (FMRFa), which activates mollusc and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily.

View Article and Find Full Text PDF

Background: Investigators conducting clinical trials have an ethical, scientific, and regulatory obligation to protect the safety of trial participants. Traditionally, safety monitoring includes manual review and coding of adverse event data by expert clinicians.

Objectives: Our study explores the use of natural language processing (NLP) and artificial intelligence (AI) methods to streamline and standardize clinician coding of adverse event data in Alzheimer's disease (AD) clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!