Variable impacts of contemporary versus legacy agricultural phosphorus on US river water quality.

Proc Natl Acad Sci U S A

US Geological Survey, Water Mission Area, Denver, CO 80225.

Published: October 2019

Phosphorus (P) fertilizer has contributed to the eutrophication of freshwater ecosystems. Watershed-based conservation programs aiming to reduce external P loading to surface waters have not resulted in significant water-quality improvements. One factor that can help explain the lack of water-quality response is remobilization of accumulated legacy (historical) P within the terrestrial-aquatic continuum, which can obscure the beneficial impacts of current conservation efforts. We examined how contemporary river P trends (between 1992 and 2012) responded to estimated changes in contemporary agricultural P balances [(fertilizer + manure inputs)-crop uptake and harvest removal] for 143 watersheds in the conterminous United States, while also developing a proxy estimate of legacy P contribution, which refers to anthropogenic P inputs before 1992. We concluded that legacy sources contributed to river export in 49 watersheds because mean contemporary river P export exceeded mean contemporary agricultural P balances. For the other 94 watersheds, agricultural P balances exceeded river P export, and our proxy estimate of legacy P was inconclusive. If legacy contributions occurred in these locations, they were likely small and dwarfed by contemporary P sources. Our continental-scale P mass balance results indicated that improved incentives and strategies are needed to promote the adoption of nutrient-conserving practices and reduce widespread contemporary P surpluses. However, a P surplus reduction is only 1 component of an effective nutrient plan as we found agricultural balances decreased in 91 watersheds with no consistent water-quality improvements, and balances increased in 52 watersheds with no consistent water-quality degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789928PMC
http://dx.doi.org/10.1073/pnas.1903226116DOI Listing

Publication Analysis

Top Keywords

agricultural balances
16
river export
12
water-quality improvements
8
contemporary river
8
contemporary agricultural
8
proxy estimate
8
estimate legacy
8
watersheds consistent
8
consistent water-quality
8
contemporary
7

Similar Publications

Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.

View Article and Find Full Text PDF

Throughout the last centuries, European climate changed substantially, which affected the potential to plant and grow crops. These changes happened not just over time but also had a spatial dimension. Yet, despite large climatic fluctuations, quantitative historical studies typically rely on static measures for agricultural suitability due to the non-availability of time-varying indices.

View Article and Find Full Text PDF

International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance.

J Dairy Sci

January 2025

Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes.

View Article and Find Full Text PDF

Structural and functional modifications of quinoa protein via hyaluronic acid-induced Maillard reaction.

Int J Biol Macromol

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; School of Basic Medicine, Chengdu University, Chengdu 610106, PR China. Electronic address:

In recent years, quinoa protein (QP) has attracted attention for its balanced amino acids composition, but its limited techno-functional properties continue to pose challenges for its utilization. Non-enzymatic Maillard glycation is considered as a promising strategy to expand the utilization of plant proteins in food processing due to its cost-effectiveness, spontaneous nature, and the lack of need for additives to initiate the reaction. Furthermore, the use of hyaluronic acid (HA) as an ingredient in food products is becoming increasingly accepted and popular.

View Article and Find Full Text PDF

Soil health and One Health are global concerns, necessitating the development of refined indicators for effective monitoring. In response, we present the Anaconda R Package, a novel tool designed to enhance the analysis of eDNA data for biomonitoring purposes. Employing a combination of different approaches, this package allows for a comprehensive investigation of species abundance and community composition under diverse conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!