Structure optimization of a new class of PPARγ antagonists.

Bioorg Med Chem

Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. Electronic address:

Published: November 2019

AI Article Synopsis

Article Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) modulators have found wide application for the treatment of cancers, metabolic disorders and inflammatory diseases. Contrary to PPARγ agonists, PPARγ antagonists have been much less studied and although they have shown immunomodulatory effects, there is still no therapeutically useful PPARγ antagonist on the market. In contrast to non-competitive, irreversible inhibition caused by 2-chloro-5-nitrobenzanilide (GW9662), the recently described (E)-2-(5-((4-methoxy-2-(trifluoromethyl)quinolin-6-yl)methoxy)-2-((4-(trifluoromethyl)benzyl)oxy)-benzylidene)-hexanoic acid (MTTB, T-10017) is a promising prototype for a new class of PPARγ antagonists. It exhibits competitive antagonism against rosiglitazone mediated activation of PPARγ ligand binding domain (PPARγLBD) in a transactivation assay in HEK293T cells with an IC of 4.3 µM against 1 µM rosiglitazone. The aim of this study was to investigate the structure-activity relationships (SAR) of the MTTB scaffold focusing on improving its physicochemical properties. Through this optimization, 34 new derivatives were prepared and characterized. Two new potent compounds (T-10075 and T-10106) with much improved drug-like properties and promising pharmacokinetic profile were identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2019.115082DOI Listing

Publication Analysis

Top Keywords

pparγ antagonists
12
class pparγ
8
pparγ
7
structure optimization
4
optimization class
4
antagonists peroxisome
4
peroxisome proliferator-activated
4
proliferator-activated receptor
4
receptor gamma
4
gamma pparγ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!