Post-transcriptional modifications have been recently expanded with the addition of RNA editing, which is predominantly mediated by adenosine and cytidine deaminases acting on DNA and RNA. Here, we review the full spectrum of physiological processes in which these modifiers are implicated, among different organisms. Adenosine to inosine (A-to-I) editors, members of the ADAR and ADAT protein families are important regulators of alternative splicing and transcriptional control. On the other hand, cytidine to uridine (C-to-U) editors, members of the AID/APOBEC family, are heavily implicated in innate and adaptive immunity with important roles in antibody diversification and antiviral response. Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they modify various RNA molecules, including miRNAs, tRNAs apart from mRNAs, whereas DNA editing is also possible by some of them. The expansion of next generation sequencing technologies provided a wealth of data regarding such modifications. RNA editing has been implicated in various disorders including cancer, and neurological diseases of the brain or the central nervous system. It is also related to cancer heterogeneity and the onset of carcinogenesis. Response to treatment can also be affected by the RNA editing status where drug efficacy is significantly compromised. Studying RNA editing events can pave the way to the identification of new disease biomarkers, and provide a more personalised therapy to various diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757416 | PMC |
http://dx.doi.org/10.1186/s12967-019-2071-4 | DOI Listing |
Mol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
BMC Plant Biol
January 2025
Chengdu Botanical Garden, Chengdu Park Urban Plant Science Research Institute, Chengdu, 610083, Sichuan, China.
Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.
View Article and Find Full Text PDFGenetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFGenome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.
View Article and Find Full Text PDFVariant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!