Recent studies have reported on the feasibility of real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) training. Although modulation of blood oxygenation level-dependent signal of single brain regions in rt-fMRI NF is a well established technique, the same does not hold true for modulation of connectivity. Self-modulation of interregional connectivity is a potential alternative in clinical neuroscience applications, since long-range functional dysconnectivity is being increasingly recognized as a mechanism underlying neuropsychiatric disorders. In this study, a framework was designed to train participants to self-regulate, in real time, interhemispheric functional connectivity between bilateral premotor cortices. To this end, participants use a novel adaptive motor imagery task, with gradual frequency variation preventing activity plateaus and subsequent decreases in correlation of activity (three NF runs). Participants were able to upregulate and maintain interhemispheric connectivity using such adaptive approach, as measured by correlation analysis. Modulation was achieved by simultaneous volitional control of activity in premotor areas. Activation patterns in the downregulation condition led to significantly lower correlation values than those observed in the upregulation condition, in the first two NF runs. Comparison between runs with and without feedback showed enhanced activation in key reward, executive function, and cognitive control regions, suggesting NF promotes reward and the development of goal-directed behavior. This proof-of-principle study suggests that functional connectivity feedback can be used for volitional self-modulation of neuronal connectivity. Functional connectivity-based NF could serve as a possible therapeutic tool in diseases related to the impairment of interhemispheric connectivity, particularly in the context to motor training after stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1089/brain.2019.0697DOI Listing

Publication Analysis

Top Keywords

interhemispheric connectivity
12
connectivity
8
real-time functional
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
adaptive approach
8
functional connectivity
8
functional
6
self-modulation premotor
4

Similar Publications

How the prefrontal hemispheres coordinate to adapt to spatial working memory (WM) demands remains an open question. Recently, two models have been proposed: A specialized model, where each hemisphere governs contralateral behavior, and a redundant model, where both hemispheres equally guide behavior in the full visual space. To explore these alternatives, we analyzed simultaneous bilateral prefrontal cortex recordings from three macaque monkeys performing a visuo-spatial WM task.

View Article and Find Full Text PDF

Hemispheric co-lateralization of language and spatial attention reduces performance in dual-task.

Brain Lang

January 2025

Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China. Electronic address:

Hemispheric specialization of different functions is proposed to confer evolutionary benefits, yet the behavioral impacts of lateralization and its cognitive and neural mechanisms remain unclear. This study investigated the effect of lateralization pattern between language and spatial attention on dual-task performance and its association with callosal connectivity. Functional lateralization was assessed using fMRI verbal fluency and landmark tasks, and interhemispheric connections were evaluated through diffusion-weighted imaging.

View Article and Find Full Text PDF

Background: While the effects of sleep deprivation on cognitive function are well-documented, its impact on high-intensity endurance performance and underlying neural mechanisms remains underexplored, especially in the context of search and rescue operations where both physical and mental performance are essential. This study examines the neurophysiological basis of sleep deprivation on high-intensity endurance using electroencephalography (EEG). In this crossover study, twenty firefighters were subjected to both sleep deprivation (SD) and normal sleep conditions, with each participant performing endurance treadmill exercise the following morning after each condition.

View Article and Find Full Text PDF

This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.

View Article and Find Full Text PDF

Purpose: To investigate the changes in cerebral hemispheric functional connections in patients with acute acquired concomitant esotropia (AACE) and their relationship with clinical manifestations, utilizing voxel-mirrored homotopic connectivity (VMHC).

Methods: A prospective, observational study was conducted involving 32 AACE patients and 31 age-, sex-, and education-matched healthy controls (HC). The resting-state functional magnetic resonance imaging (rs-fMRI) signals, binocular vision function, and psychometric scale scores were collected rs-fMRI data and structural image data were analyzed for VMHC, and a two-sample -test was used to analyze the differences in VMHC between groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!