We present results demonstrating several beneficial effects on distributed fiber optic vibration sensing (DVS) functionality and performance resulting from utilizing standard single mode optical fiber (SMF) with femtosecond laser-inscribed equally-spaced simple scattering dots. This modification is particularly useful when using traditional single-wavelength amplitude-based coherent optical time domain reflectometry (C-OTDR) as sensing method. Local sensitivity is increased in quasi-distributed interferometric sensing zones which are formed by the fiber segments between subsequent pairs of the scattering dots. The otherwise nonlinear transfer function is overwritten with that of an ordinary two-beam interferometer. This linearizes the phase response to monotonous temperature variations. Furthermore, sensitivity fading is mitigated and the demodulation of low-frequency signals is enabled. The modification also allows for the quantitative determination of local temperature gradients directly from the C-OTDR intensity traces. The dots' reflectivities and thus the induced attenuation can be tuned via the inscription process parameters. Our approach is a simple, robust and cost-effective way to gain these sensing improvements without the need for more sophisticated interrogator technology or more complex fiber structuring, e.g., based on ultra-weak FBG arrays. Our claims are substantiated by experimental evidence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806269 | PMC |
http://dx.doi.org/10.3390/s19194114 | DOI Listing |
ACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Laboratory of Molecular Medicine, Birla Institute of Technology and Sciences Pilani Hyderabad Campus, 500071, India.
Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India.
Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Inorganic Chemistry, Universidade Federal do Rio de Janeiro UFRJ, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil.
This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!