This paper presents the effects of accelerated weathering on the properties of polylactide (PLA) composites filled with linseed cake. The particle-shaped waste filler with different linseed oil content (0.9-39.8 wt %) was incorporated with constant amount of 10 wt % to a polymeric matrix and subjected to accelerated weathering tests with different exposition times. The structure of the composites, their mechanical, thermal, and thermo-mechanical properties were evaluated by means of scanning electron microscopy, tensile test, dynamic mechanical thermal analysis, and differential scanning calorimetry prior to and after weathering. The results of the measurements were analyzed in reference to the amount of crude oil contained in the filler. The behavior of the multiphase composite during weathering was described. It was found that the oil-rich samples during the first stage of the process showed increased resistance to hydrolytic degradation due to their relatively high crystallinity. The presence of water and elevated temperatures caused swelling of the filler and cracking of the polymeric matrix. Those discontinuities enabled the plasticizing oil to be rinsed out of the composite and thus water penetrated into the samples. As a result, the PLA-based composites containing oil-rich linseed cake were found to be more vulnerable to hydrolytic degradation in a longer time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780865 | PMC |
http://dx.doi.org/10.3390/polym11091495 | DOI Listing |
PLoS One
January 2025
Department of Economics, University Carlos III, Getafe, Spain.
Climate change is a spatial and temporarily non-uniform phenomenon that requires understanding its evolution to better evaluate its potential societal and economic impact. The value added of this paper lies in introducing a quantitative methodology grounded in the trend analysis of temperature distribution quantiles to analyze climate change heterogeneity (CCH). By converting these quantiles into time series objects, the methodology empowers the definition and measurement of various relevant concepts in climate change analysis (warming, warming typology, warming amplification and warming acceleration) in a straightforward and robust testable linear regression format.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:
A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland.
Accelerated photooxidation of salicylic acid (SA) was performed using UV radiation and hydrogen peroxide. HPLC-MS analysis showed that the primary intermediates are 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Deeper oxidation leads to low molecular weight aliphatic acids, such as maleic, fumaric, and glyoxylic.
View Article and Find Full Text PDFPLoS One
January 2025
Computational Media Lab, University of Texas at Austin, Austin, Texas, United States of America.
Instead of turning to emergency phone systems, social media platforms, such as Twitter, have emerged as alternative and sometimes preferred venues for members of the public in the US to communicate during hurricanes and other natural disasters. However, relevant posts are likely to be missed by responders given the volume of content on platforms. Previous work successfully identified relevant posts through machine-learned methods, but depended on human annotators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!