In this study, for a first time (according to our knowledge), we couple the methodologies of chlorophyll fluorescence imaging analysis (CF-IA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to investigate the effects of cadmium (Cd) accumulation on photosystem II (PSII) photochemistry. We used as plant material that grew hydroponically with or without (control) 100 μM Cd for five days. The spatial heterogeneity of a decreased effective quantum yield of electron transport (Φ) that was observed after exposure to Cd was linked to the spatial pattern of high Cd accumulation. However, the high increase of non-photochemical quenching (NPQ), at the leaf part with the high Cd accumulation, resulted in the decrease of the quantum yield of non-regulated energy loss (Φ) even more than that of control leaves. Thus, leaves exposed to 100 μM Cd exhibited lower reactive oxygen species (ROS) production as singlet oxygen (O). In addition, the increased photoprotective heat dissipation (NPQ) in the whole leaf under Cd exposure was sufficient enough to retain the same fraction of open reaction centers () with control leaves. Our results demonstrated that CF-IA and LA-ICP-MS could be successfully combined to monitor heavy metal effects and plant tolerance mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766342PMC
http://dx.doi.org/10.3390/ma12182953DOI Listing

Publication Analysis

Top Keywords

spatial heterogeneity
8
chlorophyll fluorescence
8
fluorescence imaging
8
imaging analysis
8
laser ablation
8
ablation inductively
8
inductively coupled
8
coupled plasma
8
plasma mass
8
mass spectrometry
8

Similar Publications

: About 65 million people worldwide are affected by epilepsy, with temporal lobe epilepsy being the most common type resistant to drugs and often requiring surgical treatment. Although open surgical approaches, such as temporal lobectomy, have been the method of choice for decades, minimally invasive MRgLITT has demonstrated promising results. However, it remains unknown whether patients who underwent one of these two approaches would show better performance on vestibulo-spatial tasks.

View Article and Find Full Text PDF

Preclinical Models for Functional Precision Lung Cancer Research.

Cancers (Basel)

December 2024

Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.

Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments.

View Article and Find Full Text PDF

Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes.

View Article and Find Full Text PDF

Mesoscale Modeling for Predicting Effective Properties and Damage Behavior of Geopolymer Concrete.

Materials (Basel)

December 2024

School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.

Geopolymer concrete is a sustainable construction material and is considered as a promising alternative to traditional Portland cement concrete. However, there is still not much research on the effective properties and damage behavior of geopolymer concrete with consideration of its heterogeneous characteristics by means of mesoscale models combined with the regularized microplane damage model. Here, in this research, an easy and simpler approach for generating concrete mesoscale models and characterizing the angular characteristics of aggregate particles is presented.

View Article and Find Full Text PDF

Background: Deep learning (DL) has set new standards in cancer diagnosis, significantly enhancing the accuracy of automated classification of whole slide images (WSIs) derived from biopsied tissue samples. To enable DL models to process these large images, WSIs are typically divided into thousands of smaller tiles, each containing 10-50 cells. Multiple Instance Learning (MIL) is a commonly used approach, where WSIs are treated as bags comprising numerous tiles (instances) and only bag-level labels are provided during training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!