Compression after Impact Behaviour and Failure Analysis of Nanosilica-Toughened Thin Epoxy/GFRP Composite Laminates.

Materials (Basel)

Smart Assistive and Rehabilitative Technology (SMART) Research Group, Department of Electrical and Electronic Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia.

Published: September 2019

Nanosilica particles were utilized as secondary reinforcement to enhance the strength of the epoxy resin matrix. Thin glass fibre reinforced polymer (GFRP) composite laminates of 3 ± 0.25 mm were developed with E-Glass mats of 610 GSM and LY556 epoxy resin. Nanosilica fillers were mixed with epoxy resin in the order of 0.25, 0.5, 0.75 and 1 wt% through mechanical stirring followed by an ultrasonication method. Thereafter, the damage was induced on toughened laminates through low-velocity drop weight impact tests and the induced damage was assessed through an image analysis tool. The residual compression strength of the impacted laminates was assessed through compression after impact (CAI) experiments. Laminates with nanosilica as secondary reinforcement exhibited enhanced compression strength, stiffness, and damage suppression. Results of Fourier-transform infrared spectroscopy revealed that physical toughening mechanisms enhanced the strength of the nanoparticle-reinforced composite. Failure analysis of the damaged area through scanning electron microscopy (SEM) evidenced the presence of key toughening mechanisms like damage containment through micro-cracks, enhanced fiber-matrix bonding, and load transfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804005PMC
http://dx.doi.org/10.3390/ma12193057DOI Listing

Publication Analysis

Top Keywords

epoxy resin
12
compression impact
8
failure analysis
8
composite laminates
8
laminates nanosilica
8
secondary reinforcement
8
compression strength
8
toughening mechanisms
8
laminates
5
compression
4

Similar Publications

To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS composite was successfully synthesized using spherical MoS particles with lamellar self-assembly generated through the calcination method, followed by utilizing the "bridging effect" of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS surface. The chemical composition and microstructure of the h-BN/MoS composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated.

View Article and Find Full Text PDF

Epoxy resin with high thermal conductivity (λ) are widely used in electronic packaging, bonding, and coating. However, those with high intrinsic λ, typically synthesized using biphenyl or aromatic rings extended by ester linkages as the mesogenic unit, often exhibit high liquid crystal transition temperatures and poor processability. In this study, a series of naphthalene-based liquid crystal epoxy monomers (LCE) were synthesized, using naphthalene as the mesogenic unit and modifying the flexible chain length on both sides.

View Article and Find Full Text PDF

α-Zirconium Phosphate Hybrid Intercalated by Carbon Dots with High Anticorrosion Efficiency for Waterborne Epoxy Resin Composite Coating.

ACS Appl Mater Interfaces

March 2025

College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, Fujian 361005, China.

In recent years, waterborne epoxy resin (WE) has garnered attention due to its lower environmental pollution compared to solvent-based coatings. However, their poor barrier properties severely limit their practical applications. In order to enhance the corrosion resistance of water-based epoxy resin coating, a highly efficient strategy of combining the barrier effect of lamellar structured zirconium phosphate (α-ZrP) and the inhibitor effect of special carbon dots by the intercalation method was proposed in this work.

View Article and Find Full Text PDF

Enable Superior Performance of Solvent-Free Electrode With Ultra-High Loading Through Designed Conductive Binder.

Small

March 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China.

Compared to the traditional slurry-coating process, the solvent-free manufacturing process holds significant potential due to its advantages, including economic viability, thick electrodes, and avoidance of organic solvents. However, the currently dominant solvent-free process suffers from poor mechanical properties and electrochemical instability. Herein, a conductive binder (M@EP), composed of multi-walled carbon nanotubes (MWNT) and epoxy resin-based binders (EP), is designed and synthesized.

View Article and Find Full Text PDF

Background: Endodontic sealers are expected to provide a favorable adhesion for a successful seal. This study aimed to evaluate the effect of ethylenediaminetetraacetic acid (EDTA) and Hydroxyethylidene Diphosphonic acid (HEDP) on bond strength of AH Plus and EndoSequence BC HiFlow sealers to root canal walls.

Methods: This study utilized 144 mandibular human premolars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!