Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the 'vegetable breads' indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the 'vegetable breads'. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In 'kale breads' and 'pea breads', 20% and 84% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835311PMC
http://dx.doi.org/10.3390/foods8100427DOI Listing

Publication Analysis

Top Keywords

pea leaves
12
lentil flour
12
kale pea
12
narrow-banded uvb
8
secondary plant
8
plant metabolites
8
functional foods
8
antioxidant activity
8
activity 'vegetable
8
'vegetable breads'
8

Similar Publications

Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.

View Article and Find Full Text PDF

Promoter of Vegetable Pea Responds to Abiotic Stresses in Transgenic Tobacco.

Int J Mol Sci

December 2024

Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.

View Article and Find Full Text PDF
Article Synopsis
  • Remote sensing helps protect plants by measuring stress effects, like salinization, using the photochemical reflectance index (PRI).
  • This study focused on analyzing how sensitive small-scale variations in PRI and reflected light intensity at 530nm are to salinization in pea plants grown in different environments.
  • The results indicate that these variations can serve as useful indicators for assessing the impact of salinization, including its negative effects on the quantum yield of PSII.
View Article and Find Full Text PDF

Long-distance electrical signals (ESs) are an important mechanism of induction of systemic adaptive changes in plants under local action of stressors. ES-induced changes in photosynthesis and transpiration play a key role in these responses increasing plant tolerance to action of adverse factors. As a result, investigating ways of regulating electrical signaling and ES-induced physiological responses is a perspective problem of plant electrophysiology.

View Article and Find Full Text PDF

Enzyme immobilization is a crucial method in biotechnology and organic chemistry that significantly improves the stability, reusability, and overall effectiveness of enzymes across various applications. Lipases are one of the most frequently applied enzymes in food. The current study investigated the potential of utilizing selected agri-food and waste materials-buckwheat husks, pea hulls, loofah sponges, and yerba mate waste-as carriers for the immobilization of Sustine 121 lipase and yeast biomass as whole-cell biocatalyst and lipase sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!