Gas separation membranes were fabricated with varying trimethylmethoxysilane(TMMOS)/tetraethoxy orthosilicate (TEOS) ratios by a chemical vapor deposition (CVD) method at650 °C and atmospheric pressure. The membrane had a high H permeance of 8.3 × 10 mol m sPa with H2/CH4 selectivity of 140 and H/CH selectivity of 180 at 300 °C. Fourier transforminfrared (FTIR) measurements indicated existence of methyl groups at high preparationtemperature (650 °C), which led to a higher hydrothermal stability of the TMMOS-derivedmembranes than of a pure TEOS-derived membrane. Temperature-dependence measurements ofthe permeance of various gas species were used to establish a permeation mechanism. It was foundthat smaller species (He, H2, and Ne) followed a solid-state diffusion model while larger species (N,CO, and CH) followed a gas translational diffusion model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835431 | PMC |
http://dx.doi.org/10.3390/membranes9100123 | DOI Listing |
Sci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
In recent two decades, considerable efforts have been devoted to the room-temperature green syntheses of metal-organic frameworks (MOFs) to reduce energy consumption and increase safety. It could improve some properties (e.g.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFBackground: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
The separation of oxygen (O) and nitrogen (N) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of and C atoms, as suitable membranes for separating O and N from air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!