Both environmental and economic issues are increasingly pushing for the revalorization of agri-food by-products, including those arising from wine industry. Wastes produced from wine-making processes are important sources of biologically active compounds, mainly phenolic acids and flavonoids, which could be re-used for several applications, for example as additive surrogates or new ingredients in foodstuffs and/or pharmaceuticals. Therefore, the development of methods aimed at isolating, characterizing and quantifying molecules present in winery by-products acquires considerable importance in view of their re-utilization on a large scale. In this connection, this study demonstrated that high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography with diode array detection (HPLC-DAD) can operate in synergy for the investigation of pomace and seed materials arising from both white and red cultivars of . By virtue of fingerprint profiling, mass spectrometry (MS) interfacing and band comparison method, HPTLC enabled detection and identification of phenolic acids, non-anthocyanic flavonoids and anthocyanins. On the contrary, only anthocyanins could be identified by HPLC-DAD, and their subsequent quantification showed that malvidin-3--glucoside (oenin) was the most abundant one. In parallel, HPTLC has allowed to detect and quantify proanthocyanidins (PAC), showing that only catechin was present in the test samples. Both quantitative analytical methods were validated in terms of linearity, detection and quantification limits and precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803953 | PMC |
http://dx.doi.org/10.3390/molecules24193416 | DOI Listing |
Nat Prod Res
January 2025
Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.
View Article and Find Full Text PDFPlants (Basel)
January 2025
United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA.
Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!