Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to effectively predict tool wear during machining is an extremely important part of diagnostics that results in changing the tool at the relevant time. Effective assessment of the rate of tool wear increases the efficiency of the process and makes it possible to replace the tool before catastrophic wear occurs. In this context, the value of the effectiveness of predicting tool wear during turning of hardened steel using artificial neural networks, multilayer perceptron (MLP), was checked. Cutting forces and acceleration of mechanical vibrations were used to monitor the tool wear process. As a result of the analysis using artificial neural networks, the suitability of individual physical phenomena to the monitoring process was assessed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804216 | PMC |
http://dx.doi.org/10.3390/ma12193091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!