Ion-exchanging dialysis as an effective method for protein entrapment in curdlan hydrogel.

Mater Sci Eng C Mater Biol Appl

Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland.

Published: December 2019

The purpose of this study was to determine whether dialysis method allows for efficient protein entrapment in curdlan-based hydrogel. Thus, bovine serum albumin, a model of bioactive protein, was incorporated into curdlan matrix using ion-exchanging dialysis method against two concentrations of CaCl solution - 2% and 10%, respectively. Then, physicochemical, mechanical, and biological properties of the bovine serum albumin-loaded curdlan hydrogels were evaluated. Received results show that neither the polymer nor the entrapment procedure change the bovine serum albumin conformation (as proven by Fourier transform infrared spectroscopy and circular dichroism spectroscopy) and the process guarantees high protein entrapment efficiency (above 95%). The curdlan-based carrier obtained against 2% of CaCl solution was found to possess higher swelling ability, release greater amounts of bovine serum albumin (up to 4 weeks), and exhibit superior biocompatibility compared to curdlan-based carrier obtained against 10% of CaCl solution. Thus, dialysis method enables efficient protein entrapment in curdlan hydrogel and obtained protein carrier via dialysis method into 2% of CaCl solution may be considered as a promising protein delivery system especially for tissue engineering applications. It should be noted that we are the first who presented effective method for protein entrapment in curdlan hydrogel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110025DOI Listing

Publication Analysis

Top Keywords

protein entrapment
20
dialysis method
16
bovine serum
16
cacl solution
16
entrapment curdlan
12
curdlan hydrogel
12
serum albumin
12
ion-exchanging dialysis
8
effective method
8
protein
8

Similar Publications

Bcl-2 protein plays an integral role in hijacking apoptosis and triggering chemoresistance in triple negative breast cancer (TNBC). The present study explored the therapeutic efficacy of Bcl-2 inhibitor i.e.

View Article and Find Full Text PDF

Sister chromatid cohesion through the lens of biochemical experiments.

Curr Opin Cell Biol

January 2025

Department of Chromosome Science, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan. Electronic address:

Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery.

View Article and Find Full Text PDF

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Hexahistidine-metal assembly encapsulated fibroblast growth factor 21 for lipopolysaccharide-induced acute lung injury.

Eur J Pharm Biopharm

January 2025

Intervention Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. Electronic address:

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) represents a spectrum of potentially fatal conditions that currently lack effective drug treatment. Recent researches suggest that Fibroblast Growth Factor 21 (FGF21) may protect against ALI/ARDS. However, the clinical use of FGF21 is limited by its rapid degradation, restricted targeting capabilities, and numerous adverse effects.

View Article and Find Full Text PDF

brown seaweed () is reported to exhibit several biological activities that promote human health, but it does not have the ability to withstand harsh environmental conditions, such as high temperatures and oxygen exposure. Encapsulation of extraction through different techniques is known to, optimize physicochemical properties, biological activities, maintain stability, and is an effective way to improve the shelf life of different foods. In the present study, the encapsulation of SIE was carried out by the freeze-drying method using maltodextrin, whey protein isolate (WPI), and chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!