The absorption and release of 6-mercaptopurine anticancer drug was investigated in biodegradable and biocompatible polymer of polylactic acid (PLA) using molecular dynamics simulation. For this purpose, the amount of mixing energy, radius of gyration, mean squared displacement and radial distribution function were computed and compared in concentrations of 5-36 wt% of 6-mercaptopurine drug. The simulation results show that increasing the concentration of the drug reduces mixing energy and PLA polymer carrier is able to carry 35.8 wt% of 6-mercaptopurine anticancer drug. Based on these results, the amount of 6-mercaptopurine release from PLA carrier 35.8 wt% of it in water environment is zero due to hydrophobic property of PLA and 6-mercaptopurine. Finally, polyethylene glycol (PEG) polymer with different percentages (10-30 wt%) was used to modify PLA carrier. The simulation results show that the rate of drug release increases by increasing the concentration of PEG polymer in the modified PLA carrier and also with increasing the percentage of drug loaded in the carrier and also the optimum weight percentage of PEG in modified PLA carrier for 35.8 wt% of drug concentration is 11 wt% and the rate of drug release is slower and equal to 4.4 molecules/ns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.110010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!