The adsorption of peptides on metal oxides is an area of significant interest, both fundamentally and in a number of technologically important areas. These range from the integration of biomaterials in the body, to denaturation of protein therapeutics and the use of biomolecules and bioinspired materials in synthesis and stabilization of novel nanomaterials. Here we present a study of the tripeptide arginylglycylaspartic acid (RGD) on the surfaces of vacuum-prepared single crystalline TiO(110), pyrocatechol-capped TiO(110), and model SLA and SLActive dental implant samples. X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy show that the RGD adsorption mode on the single crystal is consistent with bonding through the deprotonated carboxylate groups of the peptide to surface Ti atoms of the substrate. Despite the increased hydrophobicity of the pyrocatechol-capped TiO(110) surface RGD adsorption from solution increases following this surface treatment. RGD adsorption on SLA and SLActive surfaces shows that the SLActive surface has a greater uptake of RGD. The RGD uptake on the pyrocatechol capped single crystal and the model implant surfaces suggest that the ease with which surface contaminant hydrocarbons are removed from the surface has a greater influence on peptide adsorption than hydrophobicity/hydrophilicity of the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.110030 | DOI Listing |
Sci Rep
November 2024
Department of Chemistry, University of Birjand, Birjand, Iran.
Acta Biomater
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:
Macrophages can determine the ultimate outcome of the foreign body reaction (FBR). Although researchers confirmed that differences in the elemental composition of the implant interface can lead to varying levels of biological function, the mechanism underlying the polarization directions of macrophages induced by varying oxygen proportions remains unclear. This research presented the fabrication of a deoxygenated hydroxyapatite (dHAP) surface to investigate the impact of oxygen content on macrophage activation.
View Article and Find Full Text PDFNucl Med Biol
December 2024
Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India. Electronic address:
Introduction: Astatine-211 has attained significant interest in the recent times as a promising radioisotope for targeted alpha therapy (TAT) of cancer. In this study, we report the production of At via Bi (α, 2n) At reaction in a cyclotron and development of a facile radiochemical separation procedure to isolate At for formulation of nanoradiopharmaceuticals.
Methods: Natural bismuth oxide target in pelletized form wrapped in Al foil was irradiated with 30 MeV α-beam in an AVF cyclotron.
Microorganisms
July 2024
Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy.
The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
Optical imaging and spectroscopic modalities are of considerable current interest for in vivo cancer detection and image-guided surgery, but the turbid or scattering nature of biomedical tissues has severely limited their abilities to detect buried or occluded tumor lesions. Here we report the development of a dual-modality plasmonic nanostructure based on colloidal gold nanostars (AuNSs) for simultaneous surface-enhanced Raman scattering (SERS) and photoacoustic (PA) detection of tumor phantoms embedded (hidden) in ex vivo animal tissues. By using red blood cell membranes as a naturally derived biomimetic coating, we show that this class of dual-modality contrast agents can provide both Raman spectroscopic and PA signals for the detection and differentiation of hidden solid tumors with greatly improved depths of tissue penetration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!