Chronic wounds are particularly difficult to heal and constitute an important global health care problem. Some key factors that make chronic wounds challenging to heal are attributed to the incessant release of free radicals, which activate the inflammatory system and impair the repair of the wound. Intrinsic characteristics of hydrogels are beneficial for wound healing, but the effective control of free radical levels in the wound and subsequent inflammation is still a challenge. Catechol, the key molecule responsible for the mechanism of adhesion of mussels, has been proven to be an excellent radical scavenger and anti-inflammatory agent. Our approach in this work lies in the preparation of a hybrid system combining the beneficial properties of hydrogels and catechol for its application as a bioactive wound dressing to assist in the treatment of chronic wounds. The hydrogel backbone is obtained through a self-covalent crosslinking between chitosan (Ch) and oxidized hyaluronic acid (HAox) in the presence of a synthetic catechol terpolymer, which is subsequently coordinated to Fe to obtain an interpenetrated polymer network (IPN). The structural analysis, catechol release profiles, in vitro biological behavior and in vivo performance of the IPN are analyzed and compared with the semi-IPN (without Fe) and the Ch/HAox crosslinked hydrogels as controls. Catechol-containing hydrogels present high tissue adhesion strength under wet conditions, support growth, migration and proliferation of hBMSCs, protect cells against oxidative stress damage induce by ROS, and promote down-regulation of the pro-inflammatory cytokine IL-1β. Furthermore, in vivo experiments reveal their biocompatibility and stability, and histological studies indicate normal inflammatory responses and faster vascularization, highlighting the performance of the IPN system. The novel IPN design also allows for the in situ controlled and sustained delivery of catechol. Therefore, the developed IPN is a suitable ECM-mimic platform with high cell affinity and bioactive functionalities that, together with the controlled catechol release, will enhance the tissue regeneration process and has a great potential for its application as wound dressing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.110040 | DOI Listing |
Calcif Tissue Int
January 2025
Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.
X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFVet Anaesth Analg
January 2025
Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL, USA.
Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:
Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Orthopaedic Surgery and Sports Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands.
A patient in his 40s presented at the outpatient clinic with sudden pain and swelling over his medial malleolus, 16 weeks after he had undergone osteoperiosteal autografting with a medial malleolar osteotomy for his tertiary osteochondral lesion of the talus. Postoperatively, the patient was treated using the regular evidence-based rehabilitation protocol of 5 weeks of non-weight-bearing and 5 weeks of partial weight-bearing. However, after the confirmed radiological union the patient experienced an acute on chronic stress fracture through the osteotomy line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!