Samples from 13 beaches along the northern Spanish coast, a region with a history of heavy industries, were first screened to identify signs of pollution. High concentrations of Hg and Ba on Vega beach were found, both elements belong to the fluorite ore paragenesis, mined in the surroundings. Samples of beach and fluvial sediments, and nearby soils were collected in Vega beach area to address potential Hg pollution, fate and sources. Most samples showed a similar pollutants fingerprint to that of beach samples, especially those taken from white dunes, registering notable Hg concentrations. Hg was enriched in the finer fractions, and overall the main input was attributed to the mining waste discharged along the coast in the past. Although a specific risk assessment and study of the submerged sediments are advisable for this area, Hg bioavailability and methylation were low, thus indicating that this metal poses a reduced environmental risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2019.110576 | DOI Listing |
Heliyon
January 2025
Department of Earth Sciences, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.
Metal mining operations can release toxic metals to surrounding environments where site-specific conditions control the movement of contaminants. Colloid-facilitated transport, the transport of contaminants with small, mobile particles, has been recognized as a potential contaminant transport vector in groundwater, but it remains unclear under what conditions it is important and whether neutral, metal-rich mine drainage from legacy mining impacts this transport vector. This work presents a set of laboratory column experiments that study the effect of colloids on metal mobility in saturated, wetland sediment that has been receiving neutral mine drainage for nearly a century, using mixed and single metal input solutions at neutral pH.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Materials and Physics and Center of Mineral Resource Waste Recycling, Jiangsu Key Laboratory for Clean Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.
The metastable crystal structure is difficult to synthesize and maintain but normally acts as special active sites with improved functional properties. Herein, a moderate crystallographic transformation strategy is used to effectively synthesize metastable RuO. By controlling the degree of oxidation, we constructed different heterophase Ru/RuO catalysts.
View Article and Find Full Text PDFSci Rep
January 2025
Geology Department, Faculty of Science, Assiut University, Assiut, Egypt.
Limestone mining waste and its derived CaO were checked as an adsorbents of pb, Cu, and Cd ions from water solution. The characterization of Limestone and calcined limestone was studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), and Surface area measurements (BET). The optimum conditions of sorbent dosage, pH, initial concentration, and contact time factors were investigated for pristine limestone and calcined limestone absorbents.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.
Research regarding the geochemistry of beryllium (Be) in terrestrial environments is hindered by its high toxicity to humans and the low concentrations normally occurring in the environment. Although Be is considered an immobile element, extremely high dissolved concentrations have been detected in groundwater in the legacy Tailings Storage Facility (TSF) of Smaltjärnen, Sweden. Therefore, a detailed study was conducted to determine physiochemical parameters affecting the speciation of Be in the groundwater.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil. Electronic address:
Waste pile substrates from Fe mining may carry potentially toxic elements (PTE). Rehabilitation efforts must maintain soil vegetation cover effectively, avoiding the dispersion of particulate matter and reducing the risk to the environment and human health. Therefore, this study aims to evaluate the pseudo-total and extractable contents, perform chemical fractionation, and assess the bioaccessibility and risk of PTE in waste piles of Fe mining in the Eastern Amazon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!