Most clinically used general anesthetics have demonstrated neurotoxicity in animal studies, but the related mechanisms remain unknown. Previous studies suggest that anesthetics affect neuronal development through neuroinflammation, and significant effects of neuroinflammation on neurogenesis and neuronal disease have been shown. In the present study, we treated pregnant mice with 2% sevoflurane for 3 h at gestational day 15.5 and analyzed the expression of proinflammatory cytokines, including IL-6 and IL-17, in fetal mice brains. Sevoflurane induced IL-6 mRNA significantly, but did not upregulate IL-17. Other volatile anesthetics, including isoflurane, enflurane, and halothane, induced IL-6 mRNA in fetal brains as well as sevoflurane, but propofol did not. Sevoflurane and isoflurane showed the same effects in cultured microglia and astrocytes, but not in neurons. Because IL-6 induction in fetal brains may affect neuronal precursor cells (NPCs), numbers of NPCs in the subventricular zone were studied, revealing that maternal sevoflurane treatment significantly increases NPCs in offspring at 8 weeks after birth (p8wk). But this effect was absent in IL-6 knockout mice. Finally, behavioral experiments also revealed that maternal sevoflurane exposure causes learning impairments in p8wk offspring. These findings collectively demonstrate that maternal exposure to volatile anesthetics upregulates IL-6 in fetal mice brains, and the effects could result in long-lasting influences on neuronal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2019.172682 | DOI Listing |
Indian J Med Res
November 2024
Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India.
Background & objectives The choice of anesthetic for better perioperative conservation of immune responses has always been contentious. This study investigated the differential impact of the intravenous anesthetic, propofol, and the volatile anesthetic, isoflurane on the T cell immune responses, if any, among individuals going through perioperative breast cancer. Methods Perioperative blood samples (preoperative, intraoperative and postoperative) collected from participants with breast cancer in two arms namely isoflurane arm (n=50) and the propofol arm (n=50) were analyzed for T cell immune response using flow cytometry and ELISA.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.
Background: Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens.
Methods: In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis.
NeuroSci
December 2024
Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland.
Background: Intraoperative neuromonitoring (IONM) is crucial for the safety of scoliosis surgery, providing real-time feedback on the spinal cord and nerve function, primarily through motor-evoked potentials (MEPs). The choice of anesthesia plays a crucial role in influencing the quality and reliability of these neuromonitoring signals. This systematic review evaluates how different anesthetic techniques-total intravenous anesthesia (TIVA), volatile anesthetics, and regional anesthesia approaches such as Erector Spinae Plane Block (ESPB), spinal, and epidural anesthesia-affect IONM during scoliosis surgery.
View Article and Find Full Text PDFRev Esp Anestesiol Reanim (Engl Ed)
December 2024
Department of Anesthesiology, Hospital Fundación Santa Fe de Bogotá, Bogotá, Colombia.
Background: The healthcare sector emits 5% of greenhouse gases worldwide, inhaled anaesthetic agents have contributed to this effect for years. Other countries measured and limited their use, leading to positive environmental changes. There is a lack of data on Colombia.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.
Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!