Autophagy is a protecting intracellular pathway to transmit unnecessary or dysfunctional components to the lysosome for degeneration. Autophagic imbalance is connected with neurodegeneration. Neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and Huntington's disease are closely related to excitotoxicity and neuronal loss. Activation of G-protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, protects neurons from excitotoxicity-induced cell death. However, whether autophagy is involved in the neuroprotective effect of GPR30 activation is not well-known. In this study, methyl thiazolyl tetrazolium (MTT), Western blot, monodansylcadaverine (MDC) staining, and immunofluorescent staining were employed to detect the role of autophagy in cultured primary cortical neurons after glutamate exposure and G1 treatment. Pretreatment of G1 (GPR30 specific agonist) reduced neuronal loss through inhibiting excessive autophagy induced by glutamate exposure, which was blocked by GPR30 antagonist G15, phosphatidylinositol-3-kinase (PI3K), and the mammalian target of rapamycin (mTOR) inhibitors. These data suggest that GPR30 protects neurons from cell loss primarily by modulating PI3K-AKT-mTOR signaling pathway. In addition, G1 alone did not affect the basal autophagy and cell viability. We conclude that GPR30 activation reduces glutamate-induced excessive autophagy in neurons and protects neurons against excitotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.9b00287 | DOI Listing |
Commun Biol
January 2025
Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
As one of the most commonly used general anesthetics (GAs) in surgery, numerous studies have demonstrated the detrimental effects of sevoflurane exposure on myelination in the developing and elderly brain. However, the impact of sevoflurane exposure on intact myelin structure in the adult brain is barely discovered. Here, we show that repeated sevoflurane exposure, but not single exposure, causes hypomyelination and abnormal ultrastructure of myelin sheath in the prefrontal cortex (PFC) of adult male mice, which is considered as a critical brain region for general anesthesia mediated consciousness change.
View Article and Find Full Text PDFMol Neurobiol
January 2025
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.
View Article and Find Full Text PDFSci Rep
January 2025
Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China.
Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!