Motion of the pelvis throughout a step predicts step width during human walking. This behavior is often considered an important component of ensuring bipedal stability, but can be disrupted in populations with neurological injuries. The purpose of this study was to determine whether a novel force-field that exerts mediolateral forces on the legs can manipulate the relationship between pelvis motion and step width, providing proof-of-concept for a future clinical intervention. We designed a force-field able to: 1) minimize the delivered mediolateral forces (Transparent mode); 2) apply mediolateral forces to assist the leg toward mechanically-appropriate step widths (Assistive mode); and 3) apply mediolateral forces to perturb the leg away from mechanically-appropriate step widths (Perturbing mode). Neurologically-intact participants were randomly assigned to either the Assistive group (n = 12) or Perturbing group (n = 12), and performed a series of walking trials in which they interfaced with the force-field. We quantified the step-by-step relationship between mediolateral pelvis displacement and step width using partial correlations. Walking in the Transparent force-field had a minimal effect on this relationship. However, force-field assistance directly strengthened the relationship between pelvis displacement and step width, whereas force-field perturbations weakened this relationship. Both assistance and perturbations were followed by short-lived effects during a wash-out period, in which the relationship between pelvis displacement and step width differed from the baseline value. The present results demonstrate that the link between pelvis motion and step width can be manipulated through mechanical means, which may be useful for retraining gait balance in clinical populations.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2019.2941372DOI Listing

Publication Analysis

Top Keywords

step width
28
relationship pelvis
16
mediolateral forces
16
pelvis motion
12
motion step
12
pelvis displacement
12
displacement step
12
step
10
novel force-field
8
manipulate relationship
8

Similar Publications

Gluing is a critical step in aircraft sealing assembly, with glue profile inspection serving as the final quality assurance measure to ensure consistency and accuracy of the sealant coating, allowing timely detection and correction of defects to maintain assembly integrity and safety. Currently, existing glue inspection systems are limited to basic inspection capabilities, lack result digitization, and exhibit low efficiency. This paper proposes a 3D inspection technology for sealant coating quality based on line-structured light, enabling automated and high-precision inspection of sealant thickness, sealant width, positional accuracy, and overlap joint sealant contour through geometric computation.

View Article and Find Full Text PDF

Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking.

PLoS One

December 2024

Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.

Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.

View Article and Find Full Text PDF

: Chronic diarrhea in dogs is a prevalent condition that significantly impacts canine health, often leading to weight loss, dehydration, and malnutrition. Diagnosing and treating chronic diarrhea is challenging due to its multifactorial nature, necessitating collaboration among veterinarians across various specialties. Measuring cobalamin and folate levels is a crucial diagnostic step for all dogs with chronic diarrhea.

View Article and Find Full Text PDF

Objective: Camptocormia has been considered to contribute to vertical gait instability and, at times, may also lead to forward instability in experimental settings in Parkinson's disease (PD). However, these aspects, along with compensatory mechanisms, remain largely unexplored. This study comprehensively investigated gait instability and compensatory strategies in PD patients with camptocormia (PD+CC).

View Article and Find Full Text PDF

Lower extremity joint kinematics in individuals with and without bilateral knee osteoarthritis during normal and narrow-base walking: A cross-sectional study.

Knee

December 2024

Geriatric Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran; Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Knee osteoarthritis (KOA) is a prevalent musculoskeletal disease affecting joint mechanics. Considering the effect of step-width changes on the biomechanics of gait, especially the alteration of stability dynamics during narrow-base gait, this study investigated the kinematic parameters of the lower extremities during both normal and narrow-base walking in individuals with and without KOA.

Methods: A cross-sectional study with 20 individuals with bilateral KOA and 20 controls was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!