Nonindigenous species are introduced worldwide with ballast water (BW). To prevent further introductions, oceanic BW exchange and BW treatment systems are utilized, but their performance needs to be evaluated. To that aim, characterizing BW communities is essential but usually relies on exhaustive sampling and morphological taxonomic identification, which does not always allow fine-scale taxonomic resolution. Through the analysis of BW samples from 11 vessels arriving to the Chesapeake Bay (USA), we evaluated the potential of environmental DNA (eDNA) metabarcoding for BW monitoring by assessing whether the impact of BW management type could be identified, analyzing the influence of BW sampling access locations on communities, and comparing the accuracy of eDNA for taxonomic assignment and identification of nonindigenous taxa. We found that (1) different sampling access locations of the same tank resulted in different communities, (2) communities from treated and exchanged BW differ, (3) signals of source port and of ocean exchange are observed, (4) eDNA metabarcoding results in more diversity than morphological taxonomy, and (5) the nonindigenous copepod , not reported before in the Chesapeake Bay, is detected. Overall, this study highlights the potential of eDNA metabarcoding for BW monitoring, but more comprehensive sampling will be needed to optimize the approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b01855DOI Listing

Publication Analysis

Top Keywords

edna metabarcoding
12
environmental dna
8
ballast water
8
chesapeake bay
8
metabarcoding monitoring
8
sampling access
8
access locations
8
metabarcoding
4
dna metabarcoding
4
metabarcoding promising
4

Similar Publications

Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification.

View Article and Find Full Text PDF

Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary.

Mar Environ Res

December 2024

School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China. Electronic address:

Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in technology for species identification have led to the development of a new field sampling method that integrates sensor data with automated processing.
  • The LIFEPLAN project employs five systematic field sampling methods, accessible to individuals with basic biology or ecology training, to gather biodiversity data globally.
  • The article details the steps for collecting various types of data, such as images, audio, invertebrate samples, soil, and air, while emphasizing the importance of metadata and acknowledging that technology and equipment will continue to evolve for improved data collection.
View Article and Find Full Text PDF

Impact of land-use and fecal contamination on Escherichia populations in environmental samples.

Sci Rep

December 2024

Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand.

Understanding the composition of complex Escherichia coli populations from the environment is necessary for identifying strategies to reduce the impacts of fecal contamination and protect public health. Metabarcoding targeting the hypervariable gene gnd was used to reveal the complex population diversity of E. coli and phenotypically indistinct Escherichia species in water, soil, sediment, aquatic biofilm, and fecal samples from native forest and pastoral sites.

View Article and Find Full Text PDF

We describe a protocol to amplify DNA barcodes of known and unknown taxa of Phytophthora and related plant pathogenic oomycetes from a range of environments. The methods focus on sampling pathogen propagules from water using in situ sampling and filtration equipment and buffers that enable efficient storage and DNA extraction for later downstream processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!