AI Article Synopsis

Article Abstract

In order to determine whether the glucose-alanine cycle regulates rates of hepatic mitochondrial oxidation in humans, we applied positional isotopomer NMR tracer analysis (PINTA) to assess rates of hepatic mitochondrial oxidation and pyruvate carboxylase flux in healthy volunteers following both an overnight (12 hours) and a 60-hour fast. Following the 60-hour fast, rates of endogenous glucose production and mitochondrial oxidation decreased, whereas rates of hepatic pyruvate carboxylase flux remained unchanged. These reductions were associated with reduced rates of alanine turnover, assessed by [3-13C]alanine, in a subgroup of participants under similar fasting conditions. In order to determine whether this reduction in alanine turnover was responsible for the reduced rates of hepatic mitochondrial oxidation, we infused unlabeled alanine into another subgroup of 60-hour fasted subjects to increase rates of alanine turnover, similar to what was measured after a 12-hour fast, and found that this perturbation increased rates of hepatic mitochondrial oxidation. Taken together, these studies demonstrate that 60 hours of starvation induce marked reductions in rates of hepatic mitochondrial oxidation, which in turn can be attributed to reduced rates of glucose-alanine cycling, and reveal a heretofore undescribed role for glucose-alanine in the regulation of hepatic mitochondrial oxidation in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819088PMC
http://dx.doi.org/10.1172/JCI129913DOI Listing

Publication Analysis

Top Keywords

mitochondrial oxidation
32
hepatic mitochondrial
28
rates hepatic
24
reduced rates
12
alanine turnover
12
rates
10
regulation hepatic
8
mitochondrial
8
oxidation
8
glucose-alanine cycling
8

Similar Publications

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Ambient hypoxia can pose a major threat to the survival of metazoan organisms, especially insect embryos. Hemocyanin exhibits dominant expression in insect embryos, but its specific roles in hypoxia adaptation remain unexplored. Soil-dwelling locust eggs may frequently experience hypoxia during development.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!