Gastric cancer is one of the most common cancers leading to tumor-related deaths worldwide. Chicoric acid (CA) exhibits a variety of protective effects in different diseases. However, its role in regulating tumor progression has not been reported. Autophagy, as a conserved catabolic process, sustains cellular homoeostasis responding to stress to modulate cell fate. In the study, the effects of CA on gastric cancer were investigated. The results indicated that CA treatment markedly reduced the cell viability and induced apoptosis in gastric cancer cells, and prevented tumor growth in an established xenograft gastric cancer model. Furthermore, CA exposure significantly induced autophagy both in gastric cancer cells and tumor samples, as evidenced by the up-regulated expression of LC3II. Moreover, phosphorylated AMP-activated protein kinase (AMPK) and p70S6 kinase (p70s6k) expression were obviously promoted by CA in vitro and in vivo. Importantly, blocking AMPK activation abrogated CA-induced expression of LC3II in gastric cancer cells. In addition, endoplasmic reticulum (ER) stress in tumor samples or cells was markedly induced by CA treatment through promoting the expression of associated signals such as Parkin, protein kinase RNA-like ER kinase (PERK), activating transcription factors 4 (ATF4) and ATF6. Importantly, these effects were abolished by the inhibition of AMPK signaling. Collectively, our findings indicated that CA prevents human gastric cancer progression by inducing autophagy partly through the activation of AMPK, and represents an effective therapeutic strategy against gastric cancer development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2019.109144DOI Listing

Publication Analysis

Top Keywords

gastric cancer
36
cancer cells
12
gastric
9
cancer
9
chicoric acid
8
autophagy gastric
8
endoplasmic reticulum
8
reticulum stress
8
tumor samples
8
expression lc3ii
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!