Investigation on the effects of sediment resuspension on the binding of colloidal organic matter to copper using fluorescence techniques.

Chemosphere

Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.

Published: December 2019

Colloidal organic matter (COM), an important component of dissolved organic matter (DOM), plays a significant role in the transport and cycling process of the heavy metals. In this study, COM was fractionated from DOM using 0.2 μm, 100 kDa, and 2 kDa ultrafiltration membranes and the fluorescence spectra of the COM fractions were obtained. Excitation and emission matrix-parallel factor analysis and two-dimensional fluorescence correlation spectroscopy were applied to investigate the effect of sediment resuspension on the heavy metal binding characteristics of COM fractions with different molecular weights. Compared with the DOM fractions, COM exhibited stronger binding affinities and more binding sites for Cu(II), which was attributed to the significant binding effects of the components of COM. Our results suggested that the protein-like components were mainly responsible for binding heavy metals in the high-molecular-weight fraction (>100 kDa), whereas the humic-like components were responsible in the low-molecular-weight fraction (<100 kDa). Furthermore, sediment resuspension significantly influenced the composition and heavy metal binding characteristics of COM. Following resuspension, the binding affinity of COM decreased significantly, which might be attributed to the binding competition from inorganic colloids. Thus, COM plays an important role in the binding and transportation behavior of heavy metals, which is an important consideration in shallow lake ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.07.043DOI Listing

Publication Analysis

Top Keywords

organic matter
12
sediment resuspension
8
colloidal organic
8
heavy metals
8
components responsible
8
binding
6
investigation effects
4
effects sediment
4
resuspension binding
4
binding colloidal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!