The syntheses of linoleic acid esters of hydroxy linoleic acids (LAHLAs) present in oat oil and human serum have been achieved, providing access to material for testing and the determination of the stereochemistry of the natural compounds. While 9- and 13-LAHLAs were found to be a mixture of enantiomers 15-LAHLA is generated in a single optical form in oat oil. The stereochemistry of 15-LAHLA in oat oil was found to be opposite to that reported for digalactosyldiacylglycerol that possesses an embedded 15-LAHLA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.9b03054DOI Listing

Publication Analysis

Top Keywords

oat oil
12
linoleic acid
8
acid esters
8
esters hydroxy
8
hydroxy linoleic
8
linoleic acids
8
stereochemistry linoleic
4
acids syntheses
4
syntheses linoleic
4
acids lahlas
4

Similar Publications

Fabrication of oat β-glucan-starch composite systems by sequential extraction as batters for deep-fried mushrooms to prevent oil penetration.

Food Chem

January 2025

Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China. Electronic address:

Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential.

View Article and Find Full Text PDF

Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera and , which exhibited a high degree of oil biodegradation (72-96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated how different oat genotypes and Canadian growing environments affect the composition and physical traits of oats.
  • Significant variations in protein, starch, and amylose content were found based on genotype, environment, and their interactions over two growing years.
  • Analysis revealed that certain genotypes, like CDC Morrison, were more sensitive to environmental changes, while insights gained could help breeders enhance oat quality for better end products.
View Article and Find Full Text PDF

The life cycle greenhouse gas (GHG) emissions of biofuels depend on uncertain estimates of induced land use change (ILUC) and subsequent emissions from carbon stock changes. Demand for oilseed-based biofuels is associated with particularly complex market and supply chain dynamics, which must be considered. Using the global partial equilibrium model GLOBIOM, this study explores the uncertainty in market-mediated impacts and ILUC-related emissions from increasing demand for soybean biodiesel in the United States in the period 2020-2050.

View Article and Find Full Text PDF

This study aimed to achieve a precise and non-destructive quantification of the amounts of total starch, protein, β-glucan, and fat in oats using near-infrared technology in conjunction with chemometrics methods. Eight preprocessing methods (SNV, MSC, Nor, DE, FD, SD, BC, SS) were employed to process the original spectra. Subsequently, the optimal PLS model was obtained by integrating feature wavelength selection algorithms (CARS, SPA, UVE, LAR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!