Selection and Characterization of a Nanobody Biosensor of GTP-Bound RHO Activities.

Antibodies (Basel)

Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France.

Published: January 2019

AI Article Synopsis

  • - RHO GTPases act as molecular switches regulating important signaling pathways related to actin cytoskeleton dynamics, with a focus on the active form bound to GTP.
  • - Researchers selected a new nanobody called RH57 from a phage display library, which selectively targets the GTP-bound RHOA subgroup without harming cell function, unlike the previously used RH12 nanobody.
  • - The RH57 nanobody enabled the creation of a BRET-based biosensor for monitoring RHOA activation in live cells, offering potential for new screening methods to identify modulators of RHO signaling.

Article Abstract

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640709PMC
http://dx.doi.org/10.3390/antib8010008DOI Listing

Publication Analysis

Top Keywords

ras homologous
8
rh57 nanobody
8
rhoa subfamily
8
nanobody
6
rho
5
selection characterization
4
characterization nanobody
4
nanobody biosensor
4
gtp-bound
4
biosensor gtp-bound
4

Similar Publications

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA), characterized by progressive degeneration of cartilage and reactive proliferation of subchondral bone, stands as a prevalent condition in orthopedic clinics. However, the precise mechanisms underlying OA pathogenesis remain inadequately explored.

Methods: In this study, Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning techniques were employed to identify hub genes.

View Article and Find Full Text PDF

Discovery of Small Molecules that Bind to Son of Sevenless 2 (SOS2).

J Med Chem

January 2025

Boehringer Ingelheim RCV GmbH & Co. KG, A-1121 Vienna, Austria.

The Son of Sevenless (SOS) protein family includes two highly homologous proteins, SOS1 and SOS2, that act as guanine nucleotide exchange factors (GEFs) for RAS proteins. They catalyze the GDP-to-GTP exchange, resulting in an increase of the active GTP-bound form of RAS. Despite highly similar structures and expression patterns, SOS1 is generally accepted as the dominant RAS GEF for downstream signaling in pathological states.

View Article and Find Full Text PDF

The small GTPase MRAS is a broken switch.

Nat Commun

January 2025

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.

Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!