has played a pivotal role in both culture and way of life in the Arabian peninsula, particularly in arid regions where other domestic animals cannot be easily domesticated. Although, the mitochondrial genomes have recently been sequenced for several camelid species, wider phylogenetic studies are yet to be performed. The features of conserved gene elements, rapid evolutionary rate, and rare recombination make the mitochondrial genome a useful molecular marker for phylogenetic studies of closely related species. Here we carried out a comparative analysis of previously sequenced mitochondrial genomes of camelids with an emphasis on , revealing a number of noticeable findings. First, the arrangement of mitochondrial genes in is similar to those of the other camelids. Second, multiple sequence alignment of intergenic regions shows up to 90% similarity across different kinds of camels, with dromedary camels to reach 99%. Third, we successfully identified the three domains (termination-associated sequence, conserved domain and conserved sequence block) of the control region structure. The phylogenetic tree analysis showed that mitogenomes were significantly clustered in the same clade with Lama pacos mitogenome. These findings will enhance our understanding of the nucleotide composition and molecular evolution of the mitogenomes of the genus Camelus, and provide more data for comparative mitogenomics in the family Camelidae.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mitochondrial genomes
12
comparative analysis
8
phylogenetic studies
8
mitochondrial
5
analysis camelid
4
camelid mitochondrial
4
genomes played
4
played pivotal
4
pivotal role
4
role culture
4

Similar Publications

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.

Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.

View Article and Find Full Text PDF

Background: Mitochondria are organelles where energy production takes place via oxidative phosphorylation, thus mitochondrial function influences the organs with large energy consumption, such as the brain. Mitochondria contain their own circular genome (mtDNA), which encodes essential proteins/RNAs involved in oxidative phosphorylation. The maternal inheritance of mtDNA, combined with a higher risk of Alzheimer's disease (AD) observed in females, suggest mtDNA may have a role in AD.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). However, the role of these pathologies in Down Syndrome associated Alzheimer's Disease (DSAD) is unknown. Decades of research describe a relationship between mitochondrial function and Aβ production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!