During the last two decades, our understanding of the genetics of African elephant populations has greatly increased. Strong evidence, both morphological and genetic, supports recognition of two African elephant species: the savanna elephant (Loxodonta africana) and the forest elephant (). Among elephantids, phylogeographic patterns for mitochondrial DNA are highly incongruent with those detected using nuclear DNA markers, and this incongruence is almost certainly due to strongly male-biased geneflow in elephants. As our understanding of elephant population genetics has grown, a number of observations may be considered enigmatic or anomalous. Here, several of these are discussed. (i) There are a number of within-species morphological differences purported to exist among elephants in different geographic regions, which would be difficult to reconcile with the low genetic differentiation among populations. (ii) Forest elephants have a higher effective population size than savanna elephants, with nuclear genetic markers much more diverse in the forest elephants than savanna elephants, yet this finding would need to be reconciled with the life history of the two species. (iii) The savanna and forest elephants hybridize and produce fertile offspring, yet full genome analysis of individuals distant from the hybrid zone suggests that gene flow has been effectively sterilized for atleast ∼500,000 years. (iv) There are unexplored potential ramifications of the unusual mito-nuclear patterns among elephants. These questions are considered in light of highmale and low female dispersal in elephants, higher variance of reproductive success among males than females, and of habitat changes driven by glacial cycles and human activity.
Download full-text PDF |
Source |
---|
J Environ Manage
January 2025
Management Science Institute, Hohai University, Nanjing, 210098, China.
Residents' satisfaction perceptions of ecosystem services (ESs) are essential for the ecological protection and high-quality development of the Yellow River Basin (YRB). Existing studies lacks large-scale survey of local residents' satisfaction perception at urban scale within river basins, and has not effectively explored the matching relationship between the ESs supply and the perceptions of local residents. To address this gap, this study develops a database on nine ESs supply and individual perceptions of the YRB, constructs a comprehensive framework to quantify the matching of ESs supply and local residents' satisfaction perceptions, and proposes targeted strategy.
View Article and Find Full Text PDFFront Parasitol
June 2024
Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa.
Bedford, 1931 is the sole extant tick species that belongs to the genus and family and Nuttalliellidae respectively. With the characteristics that are respectively distinctive to hard and soft ticks, it is regarded as the species closest to the ancestral lineage of ticks as well as the missing link between the Argasidae and Ixodidae families. In this review, literature search of the articles reporting on was done in Google Scholar and PubMed databases.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Fucheng District, Mianyang City, Sichuan Province, Mianyang, Sichuan, 621010, CHINA.
The Cable-Driven Hyper-redundant Manipulator (CDHM), distinguished by its high flexibility and adjustable stiffness, is extensively utilized in confined and obstacle-rich environments such as aerospace and nuclear facilities. This paper introduces a novel CDHM inspired by the trunk of elephants, which changes the arm structure from cylindrical to conical. This alteration diminishes the arm's self-weight, reduces the moment arm of gravity, decreases the volume of the end joint, narrows the stroke of the driving cables, and boosts the maximum joint speed of the manipulator.
View Article and Find Full Text PDFAfrican elephants () are megaherbivores of the African savannas requiring extensive ranges that can provide critical resources for their survival and reproduction at different spatiotemporal scales. We studied seasonal differences in home range sizes and daily distance to the nearest surface water sources by five male and 10 female African elephants in the eastern Okavango Panhandle in northern Botswana between 2014 and 2017. We hypothesized that (i) elephant home ranges would be larger in the wet than in the dry season (because critical resources tend to be less localized in the wet than in the dry season), (ii) the daily distance of the elephants to the nearest ephemeral surface water sources would be larger in the dry than in the wet season because many of the ephemeral water sources would be dry in the dry season and elephants would start moving towards permanent water sources such as rivers, and lastly (iii) that the differences in elephant home ranges and daily distance to water would differ between sexes.
View Article and Find Full Text PDFEcol Evol
January 2025
Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology University of Pretoria Pretoria South Africa.
The reduced cost of next-generation sequencing (NGS) has allowed researchers to generate nuclear and mitochondrial genome data to gain deeper insights into the phylogeography, evolutionary history and biology of non-model species. While the Cape buffalo () has been well-studied across its range with traditional genetic markers over the last 25 years, researchers are building on this knowledge by generating whole genome, population-level data sets to improve understanding of the genetic composition and evolutionary history of the species. Using publicly available NGS data, we assembled 40 Cape buffalo mitochondrial genomes (mitogenomes) from four protected areas in South Africa, expanding the geographical range and almost doubling the number of mitogenomes available for this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!