Background: Drug design and development is a vast field that requires huge investment along with a long duration for providing approval to suitable drug candidates. With the advancement in the field of genomics, the information about druggable targets is being updated at a fast rate which is helpful in finding a cure for various diseases.

Methods: There are certain biochemicals as well as physiological advantages of using peptide-based therapeutics. Additionally, the limitations of peptide-based drugs can be overcome by modulating the properties of peptide molecules through various biomolecular engineering techniques. Recent advances in computational approaches have been helpful in studying the effect of peptide drugs on the biomolecular targets. Receptor - ligand-based molecular docking studies have made it easy to screen compatible inhibitors against a target.Furthermore, there are simulation tools available to evaluate stability of complexes at the molecular level. Machine learning methods have added a new edge by enabling accurate prediction of therapeutic peptides.

Results: Peptide-based drugs are expected to take over many popular drugs in the near future due to their biosafety, lower off-target binding chances and multifunctional properties.

Conclusion: This article summarises the latest developments in the field of peptide-based therapeutics related to their usage, tools, and databases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612825666190911161106DOI Listing

Publication Analysis

Top Keywords

advances computational
8
computational approaches
8
peptide-based therapeutics
8
peptide-based drugs
8
approaches peptide
4
peptide drug
4
drug discovery
4
discovery background
4
background drug
4
drug design
4

Similar Publications

Machine learning and multi-omics in precision medicine for ME/CFS.

J Transl Med

January 2025

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

View Article and Find Full Text PDF

Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.

View Article and Find Full Text PDF

Biofilms are critical for understanding environmental processes, developing biotechnology applications, and progressing in medical treatments of various infections. Nowadays, a key limiting factor for biofilm analysis is the difficulty in obtaining large datasets with fully annotated images. This study introduces a versatile approach for creating synthetic datasets of annotated biofilm images with employing deep generative modeling techniques, including VAEs, GANs, diffusion models, and CycleGAN.

View Article and Find Full Text PDF

Nonlinear memristive computational spectrometer.

Light Sci Appl

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.

In the domain of spectroscopy, miniaturization efforts often face significant challenges, particularly in achieving high spectral resolution and precise construction. Here, we introduce a computational spectrometer powered by a nonlinear photonic memristor with a WSe homojunction. This approach overcomes traditional limitations, such as constrained Fermi level tunability, persistent dark current, and limited photoresponse dimensionality through dynamic energy band modulation driven by palladium (Pd) ion migration.

View Article and Find Full Text PDF

Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling.

Nat Commun

January 2025

Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.

Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!